8ad803058f
--HG-- extra : convert_revision : 7b56535ee32551f27db8d98172159f63e5099835
864 lines
23 KiB
C++
864 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2003 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <list>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include "base/cprintf.hh"
|
|
#include "base/inifile.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "base/misc.hh"
|
|
#include "base/pollevent.hh"
|
|
#include "base/range.hh"
|
|
#include "base/trace.hh"
|
|
#include "cpu/base_cpu.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "cpu/full_cpu/smt.hh"
|
|
#include "cpu/simple_cpu/simple_cpu.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "mem/base_mem.hh"
|
|
#include "mem/mem_interface.hh"
|
|
#include "sim/annotation.hh"
|
|
#include "sim/builder.hh"
|
|
#include "sim/debug.hh"
|
|
#include "sim/host.hh"
|
|
#include "sim/sim_events.hh"
|
|
#include "sim/sim_object.hh"
|
|
#include "sim/sim_stats.hh"
|
|
|
|
#ifdef FULL_SYSTEM
|
|
#include "base/remote_gdb.hh"
|
|
#include "dev/alpha_access.h"
|
|
#include "dev/pciareg.h"
|
|
#include "mem/functional_mem/memory_control.hh"
|
|
#include "mem/functional_mem/physical_memory.hh"
|
|
#include "sim/system.hh"
|
|
#include "targetarch/alpha_memory.hh"
|
|
#include "targetarch/vtophys.hh"
|
|
#else // !FULL_SYSTEM
|
|
#include "eio/eio.hh"
|
|
#include "mem/functional_mem/functional_memory.hh"
|
|
#endif // FULL_SYSTEM
|
|
|
|
using namespace std;
|
|
|
|
SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
|
|
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
|
|
{
|
|
}
|
|
|
|
void
|
|
SimpleCPU::TickEvent::process()
|
|
{
|
|
cpu->tick();
|
|
}
|
|
|
|
const char *
|
|
SimpleCPU::TickEvent::description()
|
|
{
|
|
return "SimpleCPU tick event";
|
|
}
|
|
|
|
|
|
SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
|
|
: Event(&mainEventQueue),
|
|
cpu(_cpu)
|
|
{
|
|
}
|
|
|
|
void SimpleCPU::CacheCompletionEvent::process()
|
|
{
|
|
cpu->processCacheCompletion();
|
|
}
|
|
|
|
const char *
|
|
SimpleCPU::CacheCompletionEvent::description()
|
|
{
|
|
return "SimpleCPU cache completion event";
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
SimpleCPU::SimpleCPU(const string &_name,
|
|
System *_system,
|
|
Counter max_insts_any_thread,
|
|
Counter max_insts_all_threads,
|
|
Counter max_loads_any_thread,
|
|
Counter max_loads_all_threads,
|
|
AlphaItb *itb, AlphaDtb *dtb,
|
|
FunctionalMemory *mem,
|
|
MemInterface *icache_interface,
|
|
MemInterface *dcache_interface,
|
|
bool _def_reg, Tick freq)
|
|
: BaseCPU(_name, /* number_of_threads */ 1,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
_system, freq),
|
|
#else
|
|
SimpleCPU::SimpleCPU(const string &_name, Process *_process,
|
|
Counter max_insts_any_thread,
|
|
Counter max_insts_all_threads,
|
|
Counter max_loads_any_thread,
|
|
Counter max_loads_all_threads,
|
|
MemInterface *icache_interface,
|
|
MemInterface *dcache_interface,
|
|
bool _def_reg)
|
|
: BaseCPU(_name, /* number_of_threads */ 1,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads),
|
|
#endif
|
|
tickEvent(this), xc(NULL), defer_registration(_def_reg),
|
|
cacheCompletionEvent(this)
|
|
{
|
|
_status = Idle;
|
|
#ifdef FULL_SYSTEM
|
|
xc = new ExecContext(this, 0, system, itb, dtb, mem);
|
|
|
|
// initialize CPU, including PC
|
|
TheISA::initCPU(&xc->regs);
|
|
#else
|
|
xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
|
|
#endif // !FULL_SYSTEM
|
|
|
|
icacheInterface = icache_interface;
|
|
dcacheInterface = dcache_interface;
|
|
|
|
memReq = new MemReq();
|
|
memReq->xc = xc;
|
|
memReq->asid = 0;
|
|
memReq->data = new uint8_t[64];
|
|
|
|
numInst = 0;
|
|
startNumInst = 0;
|
|
numLoad = 0;
|
|
startNumLoad = 0;
|
|
lastIcacheStall = 0;
|
|
lastDcacheStall = 0;
|
|
|
|
execContexts.push_back(xc);
|
|
}
|
|
|
|
SimpleCPU::~SimpleCPU()
|
|
{
|
|
}
|
|
|
|
void SimpleCPU::init()
|
|
{
|
|
if (!defer_registration) {
|
|
this->registerExecContexts();
|
|
}
|
|
}
|
|
|
|
void
|
|
SimpleCPU::switchOut()
|
|
{
|
|
_status = SwitchedOut;
|
|
if (tickEvent.scheduled())
|
|
tickEvent.squash();
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
|
|
{
|
|
BaseCPU::takeOverFrom(oldCPU);
|
|
|
|
assert(!tickEvent.scheduled());
|
|
|
|
// if any of this CPU's ExecContexts are active, mark the CPU as
|
|
// running and schedule its tick event.
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *xc = execContexts[i];
|
|
if (xc->status() == ExecContext::Active && _status != Running) {
|
|
_status = Running;
|
|
tickEvent.schedule(curTick);
|
|
}
|
|
}
|
|
|
|
oldCPU->switchOut();
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::activateContext(int thread_num, int delay)
|
|
{
|
|
assert(thread_num == 0);
|
|
assert(xc);
|
|
|
|
assert(_status == Idle);
|
|
notIdleFraction++;
|
|
scheduleTickEvent(delay);
|
|
_status = Running;
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::suspendContext(int thread_num)
|
|
{
|
|
assert(thread_num == 0);
|
|
assert(xc);
|
|
|
|
assert(_status == Running);
|
|
notIdleFraction--;
|
|
unscheduleTickEvent();
|
|
_status = Idle;
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::deallocateContext(int thread_num)
|
|
{
|
|
// for now, these are equivalent
|
|
suspendContext(thread_num);
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::haltContext(int thread_num)
|
|
{
|
|
// for now, these are equivalent
|
|
suspendContext(thread_num);
|
|
}
|
|
|
|
|
|
void
|
|
SimpleCPU::regStats()
|
|
{
|
|
using namespace Statistics;
|
|
|
|
BaseCPU::regStats();
|
|
|
|
numInsts
|
|
.name(name() + ".num_insts")
|
|
.desc("Number of instructions executed")
|
|
;
|
|
|
|
numMemRefs
|
|
.name(name() + ".num_refs")
|
|
.desc("Number of memory references")
|
|
;
|
|
|
|
idleFraction
|
|
.name(name() + ".idle_fraction")
|
|
.desc("Percentage of idle cycles")
|
|
;
|
|
|
|
icacheStallCycles
|
|
.name(name() + ".icache_stall_cycles")
|
|
.desc("ICache total stall cycles")
|
|
.prereq(icacheStallCycles)
|
|
;
|
|
|
|
dcacheStallCycles
|
|
.name(name() + ".dcache_stall_cycles")
|
|
.desc("DCache total stall cycles")
|
|
.prereq(dcacheStallCycles)
|
|
;
|
|
|
|
idleFraction = constant(1.0) - notIdleFraction;
|
|
numInsts = Statistics::scalar(numInst) - Statistics::scalar(startNumInst);
|
|
simInsts += numInsts;
|
|
}
|
|
|
|
void
|
|
SimpleCPU::resetStats()
|
|
{
|
|
startNumInst = numInst;
|
|
notIdleFraction = (_status != Idle);
|
|
}
|
|
|
|
void
|
|
SimpleCPU::serialize(ostream &os)
|
|
{
|
|
SERIALIZE_ENUM(_status);
|
|
SERIALIZE_SCALAR(inst);
|
|
nameOut(os, csprintf("%s.xc", name()));
|
|
xc->serialize(os);
|
|
nameOut(os, csprintf("%s.tickEvent", name()));
|
|
tickEvent.serialize(os);
|
|
nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
|
|
cacheCompletionEvent.serialize(os);
|
|
}
|
|
|
|
void
|
|
SimpleCPU::unserialize(Checkpoint *cp, const string §ion)
|
|
{
|
|
UNSERIALIZE_ENUM(_status);
|
|
UNSERIALIZE_SCALAR(inst);
|
|
xc->unserialize(cp, csprintf("%s.xc", section));
|
|
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
|
|
cacheCompletionEvent
|
|
.unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
|
|
}
|
|
|
|
void
|
|
change_thread_state(int thread_number, int activate, int priority)
|
|
{
|
|
}
|
|
|
|
Fault
|
|
SimpleCPU::copySrcTranslate(Addr src)
|
|
{
|
|
memReq->reset(src, (dcacheInterface) ?
|
|
dcacheInterface->getBlockSize()
|
|
: 64);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataReadReq(memReq);
|
|
|
|
if (fault == No_Fault) {
|
|
xc->copySrcAddr = src;
|
|
xc->copySrcPhysAddr = memReq->paddr;
|
|
} else {
|
|
xc->copySrcAddr = 0;
|
|
xc->copySrcPhysAddr = 0;
|
|
}
|
|
return fault;
|
|
}
|
|
|
|
Fault
|
|
SimpleCPU::copy(Addr dest)
|
|
{
|
|
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
|
|
uint8_t data[blk_size];
|
|
assert(xc->copySrcPhysAddr);
|
|
memReq->reset(dest, blk_size);
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataWriteReq(memReq);
|
|
if (fault == No_Fault) {
|
|
Addr dest_addr = memReq->paddr;
|
|
// Need to read straight from memory since we have more than 8 bytes.
|
|
memReq->paddr = xc->copySrcPhysAddr;
|
|
xc->mem->read(memReq, data);
|
|
memReq->paddr = dest_addr;
|
|
xc->mem->write(memReq, data);
|
|
}
|
|
return fault;
|
|
}
|
|
|
|
// precise architected memory state accessor macros
|
|
template <class T>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, T &data, unsigned flags)
|
|
{
|
|
memReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataReadReq(memReq);
|
|
|
|
// do functional access
|
|
if (fault == No_Fault)
|
|
fault = xc->read(memReq, data);
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
if (fault == No_Fault)
|
|
traceData->setData(data);
|
|
}
|
|
|
|
// if we have a cache, do cache access too
|
|
if (fault == No_Fault && dcacheInterface) {
|
|
memReq->cmd = Read;
|
|
memReq->completionEvent = NULL;
|
|
memReq->time = curTick;
|
|
MemAccessResult result = dcacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && dcacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastDcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = DcacheMissStall;
|
|
}
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, double &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint64_t*)&data, flags);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, float &data, unsigned flags)
|
|
{
|
|
return read(addr, *(uint32_t*)&data, flags);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
|
|
{
|
|
return read(addr, (uint32_t&)data, flags);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Fault
|
|
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
memReq->reset(addr, sizeof(T), flags);
|
|
|
|
// translate to physical address
|
|
Fault fault = xc->translateDataWriteReq(memReq);
|
|
|
|
// do functional access
|
|
if (fault == No_Fault)
|
|
fault = xc->write(memReq, data);
|
|
|
|
if (fault == No_Fault && dcacheInterface) {
|
|
memReq->cmd = Write;
|
|
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
|
|
memReq->completionEvent = NULL;
|
|
memReq->time = curTick;
|
|
MemAccessResult result = dcacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && dcacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastDcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = DcacheMissStall;
|
|
}
|
|
}
|
|
|
|
if (res && (fault == No_Fault))
|
|
*res = memReq->result;
|
|
|
|
return fault;
|
|
}
|
|
|
|
|
|
#ifndef DOXYGEN_SHOULD_SKIP_THIS
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
template
|
|
Fault
|
|
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
#endif //DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint64_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write(*(uint32_t*)&data, addr, flags, res);
|
|
}
|
|
|
|
|
|
template<>
|
|
Fault
|
|
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
return write((uint32_t)data, addr, flags, res);
|
|
}
|
|
|
|
|
|
#ifdef FULL_SYSTEM
|
|
Addr
|
|
SimpleCPU::dbg_vtophys(Addr addr)
|
|
{
|
|
return vtophys(xc, addr);
|
|
}
|
|
#endif // FULL_SYSTEM
|
|
|
|
Tick save_cycle = 0;
|
|
|
|
|
|
void
|
|
SimpleCPU::processCacheCompletion()
|
|
{
|
|
switch (status()) {
|
|
case IcacheMissStall:
|
|
icacheStallCycles += curTick - lastIcacheStall;
|
|
_status = IcacheMissComplete;
|
|
scheduleTickEvent(1);
|
|
break;
|
|
case DcacheMissStall:
|
|
dcacheStallCycles += curTick - lastDcacheStall;
|
|
_status = Running;
|
|
scheduleTickEvent(1);
|
|
break;
|
|
case SwitchedOut:
|
|
// If this CPU has been switched out due to sampling/warm-up,
|
|
// ignore any further status changes (e.g., due to cache
|
|
// misses outstanding at the time of the switch).
|
|
return;
|
|
default:
|
|
panic("SimpleCPU::processCacheCompletion: bad state");
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
void
|
|
SimpleCPU::post_interrupt(int int_num, int index)
|
|
{
|
|
BaseCPU::post_interrupt(int_num, index);
|
|
|
|
if (xc->status() == ExecContext::Suspended) {
|
|
DPRINTF(IPI,"Suspended Processor awoke\n");
|
|
xc->activate();
|
|
Annotate::Resume(xc);
|
|
}
|
|
}
|
|
#endif // FULL_SYSTEM
|
|
|
|
/* start simulation, program loaded, processor precise state initialized */
|
|
void
|
|
SimpleCPU::tick()
|
|
{
|
|
traceData = NULL;
|
|
|
|
Fault fault = No_Fault;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
if (AlphaISA::check_interrupts &&
|
|
xc->cpu->check_interrupts() &&
|
|
!PC_PAL(xc->regs.pc) &&
|
|
status() != IcacheMissComplete) {
|
|
int ipl = 0;
|
|
int summary = 0;
|
|
AlphaISA::check_interrupts = 0;
|
|
IntReg *ipr = xc->regs.ipr;
|
|
|
|
if (xc->regs.ipr[TheISA::IPR_SIRR]) {
|
|
for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
|
|
i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
|
|
if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
|
|
// See table 4-19 of 21164 hardware reference
|
|
ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t interrupts = xc->cpu->intr_status();
|
|
for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
|
|
i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
|
|
if (interrupts & (ULL(1) << i)) {
|
|
// See table 4-19 of 21164 hardware reference
|
|
ipl = i;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
|
|
if (ipr[TheISA::IPR_ASTRR])
|
|
panic("asynchronous traps not implemented\n");
|
|
|
|
if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
|
|
ipr[TheISA::IPR_ISR] = summary;
|
|
ipr[TheISA::IPR_INTID] = ipl;
|
|
xc->ev5_trap(Interrupt_Fault);
|
|
|
|
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
|
|
ipr[TheISA::IPR_IPLR], ipl, summary);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// maintain $r0 semantics
|
|
xc->regs.intRegFile[ZeroReg] = 0;
|
|
#ifdef TARGET_ALPHA
|
|
xc->regs.floatRegFile.d[ZeroReg] = 0.0;
|
|
#endif // TARGET_ALPHA
|
|
|
|
if (status() == IcacheMissComplete) {
|
|
// We've already fetched an instruction and were stalled on an
|
|
// I-cache miss. No need to fetch it again.
|
|
|
|
// Set status to running; tick event will get rescheduled if
|
|
// necessary at end of tick() function.
|
|
_status = Running;
|
|
}
|
|
else {
|
|
// Try to fetch an instruction
|
|
|
|
// set up memory request for instruction fetch
|
|
#ifdef FULL_SYSTEM
|
|
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
|
|
#else
|
|
#define IFETCH_FLAGS(pc) 0
|
|
#endif
|
|
|
|
memReq->cmd = Read;
|
|
memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
|
|
IFETCH_FLAGS(xc->regs.pc));
|
|
|
|
fault = xc->translateInstReq(memReq);
|
|
|
|
if (fault == No_Fault)
|
|
fault = xc->mem->read(memReq, inst);
|
|
|
|
if (icacheInterface && fault == No_Fault) {
|
|
memReq->completionEvent = NULL;
|
|
|
|
memReq->time = curTick;
|
|
MemAccessResult result = icacheInterface->access(memReq);
|
|
|
|
// Ugly hack to get an event scheduled *only* if the access is
|
|
// a miss. We really should add first-class support for this
|
|
// at some point.
|
|
if (result != MA_HIT && icacheInterface->doEvents()) {
|
|
memReq->completionEvent = &cacheCompletionEvent;
|
|
lastIcacheStall = curTick;
|
|
unscheduleTickEvent();
|
|
_status = IcacheMissStall;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we've got a valid instruction (i.e., no fault on instruction
|
|
// fetch), then execute it.
|
|
if (fault == No_Fault) {
|
|
|
|
// keep an instruction count
|
|
numInst++;
|
|
|
|
// check for instruction-count-based events
|
|
comInstEventQueue[0]->serviceEvents(numInst);
|
|
|
|
// decode the instruction
|
|
StaticInstPtr<TheISA> si(inst);
|
|
|
|
traceData = Trace::getInstRecord(curTick, xc, this, si,
|
|
xc->regs.pc);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
xc->regs.opcode = (inst >> 26) & 0x3f;
|
|
xc->regs.ra = (inst >> 21) & 0x1f;
|
|
#endif // FULL_SYSTEM
|
|
|
|
xc->func_exe_inst++;
|
|
|
|
fault = si->execute(this, xc, traceData);
|
|
|
|
#ifdef FULL_SYSTEM
|
|
SWContext *ctx = xc->swCtx;
|
|
if (ctx)
|
|
ctx->process(xc, si.get());
|
|
#endif
|
|
|
|
if (si->isMemRef()) {
|
|
numMemRefs++;
|
|
}
|
|
|
|
if (si->isLoad()) {
|
|
++numLoad;
|
|
comLoadEventQueue[0]->serviceEvents(numLoad);
|
|
}
|
|
|
|
if (traceData)
|
|
traceData->finalize();
|
|
|
|
} // if (fault == No_Fault)
|
|
|
|
if (fault != No_Fault) {
|
|
#ifdef FULL_SYSTEM
|
|
xc->ev5_trap(fault);
|
|
#else // !FULL_SYSTEM
|
|
fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
|
|
#endif // FULL_SYSTEM
|
|
}
|
|
else {
|
|
// go to the next instruction
|
|
xc->regs.pc = xc->regs.npc;
|
|
xc->regs.npc += sizeof(MachInst);
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
Addr oldpc;
|
|
do {
|
|
oldpc = xc->regs.pc;
|
|
system->pcEventQueue.service(xc);
|
|
} while (oldpc != xc->regs.pc);
|
|
#endif
|
|
|
|
assert(status() == Running ||
|
|
status() == Idle ||
|
|
status() == DcacheMissStall);
|
|
|
|
if (status() == Running && !tickEvent.scheduled())
|
|
tickEvent.schedule(curTick + 1);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// SimpleCPU Simulation Object
|
|
//
|
|
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
Param<Counter> max_insts_any_thread;
|
|
Param<Counter> max_insts_all_threads;
|
|
Param<Counter> max_loads_any_thread;
|
|
Param<Counter> max_loads_all_threads;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
SimObjectParam<AlphaItb *> itb;
|
|
SimObjectParam<AlphaDtb *> dtb;
|
|
SimObjectParam<FunctionalMemory *> mem;
|
|
SimObjectParam<System *> system;
|
|
Param<int> mult;
|
|
#else
|
|
SimObjectParam<Process *> workload;
|
|
#endif // FULL_SYSTEM
|
|
|
|
SimObjectParam<BaseMem *> icache;
|
|
SimObjectParam<BaseMem *> dcache;
|
|
|
|
Param<bool> defer_registration;
|
|
|
|
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
INIT_PARAM_DFLT(max_insts_any_thread,
|
|
"terminate when any thread reaches this inst count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_insts_all_threads,
|
|
"terminate when all threads have reached this inst count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_loads_any_thread,
|
|
"terminate when any thread reaches this load count",
|
|
0),
|
|
INIT_PARAM_DFLT(max_loads_all_threads,
|
|
"terminate when all threads have reached this load count",
|
|
0),
|
|
|
|
#ifdef FULL_SYSTEM
|
|
INIT_PARAM(itb, "Instruction TLB"),
|
|
INIT_PARAM(dtb, "Data TLB"),
|
|
INIT_PARAM(mem, "memory"),
|
|
INIT_PARAM(system, "system object"),
|
|
INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
|
|
#else
|
|
INIT_PARAM(workload, "processes to run"),
|
|
#endif // FULL_SYSTEM
|
|
|
|
INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
|
|
INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
|
|
INIT_PARAM_DFLT(defer_registration, "defer registration with system "
|
|
"(for sampling)", false)
|
|
|
|
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
|
|
|
|
|
|
CREATE_SIM_OBJECT(SimpleCPU)
|
|
{
|
|
SimpleCPU *cpu;
|
|
#ifdef FULL_SYSTEM
|
|
if (mult != 1)
|
|
panic("processor clock multiplier must be 1\n");
|
|
|
|
cpu = new SimpleCPU(getInstanceName(), system,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
itb, dtb, mem,
|
|
(icache) ? icache->getInterface() : NULL,
|
|
(dcache) ? dcache->getInterface() : NULL,
|
|
defer_registration,
|
|
ticksPerSecond * mult);
|
|
#else
|
|
|
|
cpu = new SimpleCPU(getInstanceName(), workload,
|
|
max_insts_any_thread, max_insts_all_threads,
|
|
max_loads_any_thread, max_loads_all_threads,
|
|
(icache) ? icache->getInterface() : NULL,
|
|
(dcache) ? dcache->getInterface() : NULL,
|
|
defer_registration);
|
|
|
|
#endif // FULL_SYSTEM
|
|
#if 0
|
|
if (!defer_registration) {
|
|
cpu->registerExecContexts();
|
|
}
|
|
#endif
|
|
return cpu;
|
|
}
|
|
|
|
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
|
|
|