gem5/util/config/m5config.py
Steve Reinhardt d85b26d65a Minor enhancements to Python config stuff:
- Add support for assigning NULL to SimObject pointers.  In Python,
this is a special value, distinct from None.
- Initial, incomplete pass at regenerating C++ parameter code (declarations
and INIT_PARAM macros) from .odesc files.

util/config/m5config.py:
    - Add support for assigning NULL to SimObject pointers.  In Python,
    this is a special value, distinct from None.
    - Initial, incomplete pass at regenerating C++ parameter code (declarations
    and INIT_PARAM macros) from .odesc files.

--HG--
extra : convert_revision : d7ae8f32e30b3c0829fd1a60589dd998e2e0d0d7
2004-04-28 16:28:37 -07:00

804 lines
31 KiB
Python

from __future__ import generators
import os
import re
import sys
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the deisred simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache('my_cache', root, size=64*K)
# cache.hit_latency = 3
# cache.assoc = 8
#
# (The first two constructor arguments specify the name of the created
# cache and its parent node in the hierarchy.)
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# The Python module provides another class, ConfigNode, which is a
# superclass of SimObject. ConfigNode implements the parent/child
# relationship for building the configuration hierarchy tree.
# Concrete instances of ConfigNode can be used to group objects in the
# hierarchy, but do not correspond to SimObjects themselves (like a
# .ini section with "children=" but no "type=".
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file. See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################
#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior. In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables. These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters. These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _param_dict dictionary. Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator). Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.
# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited. Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _param_dict attribute. Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments. Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation. To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################
# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject). This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaConfigNode(type):
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(cls, name, bases, dict):
priv_keys = [k for k in dict.iterkeys() if k.startswith('_')]
priv_dict = {}
for k in priv_keys: priv_dict[k] = dict[k]; del dict[k]
# entries left in dict will get passed to __init__, where we'll
# deal with them as params.
return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict)
# initialization: start out with an empty param dict (makes life
# simpler if we can assume _param_dict is always valid). Also
# build inheritance list to simplify searching for inherited
# params. Finally set parameters specified in class definition
# (if any).
def __init__(cls, name, bases, dict):
super(MetaConfigNode, cls).__init__(cls, name, bases, {})
# initialize _param_dict to empty
cls._param_dict = {}
# __mro__ is the ordered list of classes Python uses for
# method resolution. We want to pick out the ones that have a
# _param_dict attribute for doing parameter lookups.
cls._param_bases = \
[c for c in cls.__mro__ if hasattr(c, '_param_dict')]
# initialize attributes with values from class definition
for (pname, value) in dict.items():
try:
setattr(cls, pname, value)
except Exception, exc:
print "Error setting '%s' to '%s' on class '%s'\n" \
% (pname, value, cls.__name__), exc
# set the class's parameter dictionary (called when loading
# class descriptions)
def set_param_dict(cls, param_dict):
# should only be called once (current one should be empty one
# from __init__)
assert not cls._param_dict
cls._param_dict = param_dict
# initialize attributes with default values
for (pname, param) in param_dict.items():
try:
setattr(cls, pname, param.default)
except Exception, exc:
print "Error setting '%s' default on class '%s'\n" \
% (pname, cls.__name__), exc
# Lookup a parameter description by name in the given class. Use
# the _param_bases list defined in __init__ to go up the
# inheritance hierarchy if necessary.
def lookup_param(cls, param_name):
for c in cls._param_bases:
param = c._param_dict.get(param_name)
if param: return param
return None
# Set attribute (called on foo.attr_name = value when foo is an
# instance of class cls).
def __setattr__(cls, attr_name, value):
# normal processing for private attributes
if attr_name.startswith('_'):
object.__setattr__(cls, attr_name, value)
return
# no '_': must be SimObject param
param = cls.lookup_param(attr_name)
if not param:
raise AttributeError, \
"Class %s has no parameter %s" % (cls.__name__, attr_name)
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value
object.__setattr__(cls, attr_name, param.make_value(value))
# generator that iterates across all parameters for this class and
# all classes it inherits from
def all_param_names(cls):
for c in cls._param_bases:
for p in c._param_dict.iterkeys():
yield p
# The ConfigNode class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class ConfigNode(object):
# Specify metaclass. Any class inheriting from ConfigNode will
# get this metaclass.
__metaclass__ = MetaConfigNode
# Constructor. Since bare ConfigNodes don't have parameters, just
# worry about the name and the parent/child stuff.
def __init__(self, _name, _parent=None):
# Type-check _name
if type(_name) != str:
if isinstance(_name, ConfigNode):
# special case message for common error of trying to
# coerce a SimObject to the wrong type
raise TypeError, \
"Attempt to coerce %s to %s" \
% (_name.__class__.__name__, self.__class__.__name__)
else:
raise TypeError, \
"%s name must be string (was %s, %s)" \
% (self.__class__.__name__, _name, type(_name))
# if specified, parent must be a subclass of ConfigNode
if _parent != None and not isinstance(_parent, ConfigNode):
raise TypeError, \
"%s parent must be ConfigNode subclass (was %s, %s)" \
% (self.__class__.__name__, _name, type(_name))
self._name = _name
self._parent = _parent
self._children = {}
if (_parent):
_parent.__addChild(self)
# Set up absolute path from root.
if (_parent and _parent._path != 'Universe'):
self._path = _parent._path + '.' + self._name
else:
self._path = self._name
# When printing (e.g. to .ini file), just give the name.
def __str__(self):
return self._name
# Catch attribute accesses that could be requesting children, and
# satisfy them. Note that __getattr__ is called only if the
# regular attribute lookup fails, so private and parameter lookups
# will already be satisfied before we ever get here.
def __getattr__(self, name):
try:
return self._children[name]
except KeyError:
raise AttributeError, \
"Node '%s' has no attribute or child '%s'" \
% (self._name, name)
# Set attribute. All attribute assignments go through here. Must
# be private attribute (starts with '_') or valid parameter entry.
# Basically identical to MetaConfigClass.__setattr__(), except
# this handles instances rather than class attributes.
def __setattr__(self, attr_name, value):
if attr_name.startswith('_'):
object.__setattr__(self, attr_name, value)
return
# not private; look up as param
param = self.__class__.lookup_param(attr_name)
if not param:
raise AttributeError, \
"Class %s has no parameter %s" \
% (self.__class__.__name__, attr_name)
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value
object.__setattr__(self, attr_name, param.make_value(value))
# Add a child to this node.
def __addChild(self, new_child):
# set child's parent before calling this function
assert new_child._parent == self
if not isinstance(new_child, ConfigNode):
raise TypeError, \
"ConfigNode child must also be of class ConfigNode"
if new_child._name in self._children:
raise AttributeError, \
"Node '%s' already has a child '%s'" \
% (self._name, new_child._name)
self._children[new_child._name] = new_child
# operator overload for '+='. You can say "node += child" to add
# a child that was created with parent=None. An early attempt
# at playing with syntax; turns out not to be that useful.
def __iadd__(self, new_child):
if new_child._parent != None:
raise AttributeError, \
"Node '%s' already has a parent" % new_child._name
new_child._parent = self
self.__addChild(new_child)
return self
# Print instance info to .ini file.
def _instantiate(self):
print '[' + self._path + ']' # .ini section header
if self._children:
# instantiate children in sorted order for backward
# compatibility (else we can end up with cpu1 before cpu0).
child_names = self._children.keys()
child_names.sort()
print 'children =',
for child_name in child_names:
print child_name,
print
self._instantiateParams()
print
# recursively dump out children
if self._children:
for child_name in child_names:
self._children[child_name]._instantiate()
# ConfigNodes have no parameters. Overridden by SimObject.
def _instantiateParams(self):
pass
# SimObject is a minimal extension of ConfigNode, implementing a
# hierarchy node that corresponds to an M5 SimObject. It prints out a
# "type=" line to indicate its SimObject class, prints out the
# assigned parameters corresponding to its class, and allows
# parameters to be set by keyword in the constructor. Note that most
# of the heavy lifting for the SimObject param handling is done in the
# MetaConfigNode metaclass.
class SimObject(ConfigNode):
# initialization: like ConfigNode, but handle keyword-based
# parameter initializers.
def __init__(self, _name, _parent=None, **params):
ConfigNode.__init__(self, _name, _parent)
for param, value in params.items():
setattr(self, param, value)
# print type and parameter values to .ini file
def _instantiateParams(self):
print "type =", self.__class__._name
for pname in self.__class__.all_param_names():
value = getattr(self, pname)
if value != None:
print pname, '=', value
def _sim_code(cls):
name = cls.__name__
param_names = cls._param_dict.keys()
param_names.sort()
code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
decls = [" " + cls._param_dict[pname].sim_decl(pname) \
for pname in param_names]
code += "\n".join(decls) + "\n"
code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
inits = [" " + cls._param_dict[pname].sim_init(pname) \
for pname in param_names]
code += ",\n".join(inits) + "\n"
code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
return code
_sim_code = classmethod(_sim_code)
#####################################################################
#
# Parameter description classes
#
# The _param_dict dictionary in each class maps parameter names to
# either a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files). The
# make_value() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode.set_param_dict()); after that point they aren't
# used.
#
#####################################################################
def isNullPointer(value):
return isinstance(value, NullSimObject)
def isSimObjectType(ptype):
return issubclass(ptype, SimObject)
# Regular parameter.
class Param(object):
# Constructor. E.g., Param(Int, "number of widgets", 5)
def __init__(self, ptype, desc, default=None):
self.ptype = ptype
self.ptype_name = self.ptype.__name__
self.desc = desc
self.default = default
# Convert assigned value to appropriate type. Force parameter
# value (rhs of '=') to ptype (or None, which means not set).
def make_value(self, value):
# nothing to do if None or already correct type. Also allow NULL
# pointer to be assigned where a SimObject is expected.
if value == None or isinstance(value, self.ptype) or \
isNullPointer(value) and isSimObjectType(self.ptype):
return value
# this type conversion will raise an exception if it's illegal
return self.ptype(value)
def sim_decl(self, name):
return 'Param<%s> %s;' % (self.ptype_name, name)
def sim_init(self, name):
if self.default == None:
return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
else:
return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
(name, self.desc, str(self.default))
# The _VectorParamValue class is a wrapper for vector-valued
# parameters. The leading underscore indicates that users shouldn't
# see this class; it's magically generated by VectorParam. The
# parameter values are stored in the 'value' field as a Python list of
# whatever type the parameter is supposed to be. The only purpose of
# storing these instead of a raw Python list is that we can override
# the __str__() method to not print out '[' and ']' in the .ini file.
class _VectorParamValue(object):
def __init__(self, list):
self.value = list
def __str__(self):
return ' '.join(map(str, self.value))
# Vector-valued parameter description. Just like Param, except that
# the value is a vector (list) of the specified type instead of a
# single value.
class VectorParam(Param):
# Inherit Param constructor. However, the resulting parameter
# will be a list of ptype rather than a single element of ptype.
def __init__(self, ptype, desc, default=None):
Param.__init__(self, ptype, desc, default)
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def make_value(self, value):
if value == None: return value
if isinstance(value, list) or isinstance(value, tuple):
# list: coerce each element into new list
val_list = [Param.make_value(self, v) for v in iter(value)]
else:
# singleton: coerce & wrap in a list
val_list = [Param.make_value(self, value)]
# wrap list in _VectorParamValue (see above)
return _VectorParamValue(val_list)
def sim_decl(self, name):
return 'VectorParam<%s> %s;' % (self.ptype_name, name)
# sim_init inherited from Param
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method). Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################
# Integer parameter type.
class Int(object):
# Constructor. Value must be Python int or long (long integer).
def __init__(self, value):
t = type(value)
if t == int or t == long:
self.value = value
else:
raise TypeError, "Int param got value %s %s" % (repr(value), t)
# Use Python string conversion. Note that this puts an 'L' on the
# end of long integers; we can strip that off here if it gives us
# trouble.
def __str__(self):
return str(self.value)
# Counter, Addr, and Tick are just aliases for Int for now.
class Counter(Int):
pass
class Addr(Int):
pass
class Tick(Int):
pass
# Boolean parameter type.
class Bool(object):
# Constructor. Typically the value will be one of the Python bool
# constants True or False (or the aliases true and false below).
# Also need to take integer 0 or 1 values since bool was not a
# distinct type in Python 2.2. Parse a bunch of boolean-sounding
# strings too just for kicks.
def __init__(self, value):
t = type(value)
if t == bool:
self.value = value
elif t == int or t == long:
if value == 1:
self.value = True
elif value == 0:
self.value = False
elif t == str:
v = value.lower()
if v == "true" or v == "t" or v == "yes" or v == "y":
self.value = True
elif v == "false" or v == "f" or v == "no" or v == "n":
self.value = False
# if we didn't set it yet, it must not be something we understand
if not hasattr(self, 'value'):
raise TypeError, "Bool param got value %s %s" % (repr(value), t)
# Generate printable string version.
def __str__(self):
if self.value: return "true"
else: return "false"
# String-valued parameter.
class String(object):
# Constructor. Value must be Python string.
def __init__(self, value):
t = type(value)
if t == str:
self.value = value
else:
raise TypeError, "String param got value %s %s" % (repr(value), t)
# Generate printable string version. Not too tricky.
def __str__(self):
return self.value
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
class NullSimObject(object):
# Constructor. No parameters, nothing to do.
def __init__(self):
pass
def __str__(self):
return "NULL"
# The only instance you'll ever need...
NULL = NullSimObject()
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Base class for list-based Enum types.
class _ListEnum(object):
# Constructor. Value must be a member of the type's map list.
def __init__(self, value):
if value in self.map:
self.value = value
self.index = self.map.index(value)
else:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.map)
# Generate printable string version of value.
def __str__(self):
return str(self.value)
class _DictEnum(object):
# Constructor. Value must be a key in the type's map dictionary.
def __init__(self, value):
if value in self.map:
self.value = value
self.index = self.map[value]
else:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.map.keys())
# Generate printable string version of value.
def __str__(self):
return str(self.value)
# Enum metaclass... calling Enum(foo) generates a new type (class)
# that derives from _ListEnum or _DictEnum as appropriate.
class Enum(type):
# counter to generate unique names for generated classes
counter = 1
def __new__(cls, map):
if isinstance(map, dict):
base = _DictEnum
keys = map.keys()
elif isinstance(map, list):
base = _ListEnum
keys = map
else:
raise TypeError, "Enum map must be list or dict (got %s)" % map
classname = "Enum%04d" % Enum.counter
Enum.counter += 1
# New class derives from selected base, and gets a 'map'
# attribute containing the specified list or dict.
return type.__new__(cls, classname, (base,), { 'map': map })
#
# "Constants"... handy aliases for various values.
#
# For compatibility with C++ bool constants.
false = False
true = True
# Some memory range specifications use this as a default upper bound.
MAX_ADDR = 2 ** 63
# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
K = 1024
M = K*K
G = K*M
#####################################################################
#
# Object description loading.
#
# The final step is to define the classes corresponding to M5 objects
# and their parameters. These classes are described in .odesc files
# in the source tree. This code walks the tree to find those files
# and loads up the descriptions (by evaluating them in pieces as
# Python code).
#
#
# Because SimObject classes inherit from other SimObject classes, and
# can use arbitrary other SimObject classes as parameter types, we
# have to do this in three steps:
#
# 1. Walk the tree to find all the .odesc files. Note that the base
# of the filename *must* match the class name. This step builds a
# mapping from class names to file paths.
#
# 2. Start generating empty class definitions (via def_class()) using
# the OBJECT field of the .odesc files to determine inheritance.
# def_class() recurses on demand to define needed base classes before
# derived classes.
#
# 3. Now that all of the classes are defined, go through the .odesc
# files one more time loading the parameter descriptions.
#
#####################################################################
# dictionary: maps object names to file paths
odesc_file = {}
# dictionary: maps object names to boolean flag indicating whether
# class definition was loaded yet. Since SimObject is defined in
# m5.config.py, count it as loaded.
odesc_loaded = { 'SimObject': True }
# Find odesc files in namelist and initialize odesc_file and
# odesc_loaded dictionaries. Called via os.path.walk() (see below).
def find_odescs(process, dirpath, namelist):
# Prune out SCCS directories so we don't process s.*.odesc files.
i = 0
while i < len(namelist):
if namelist[i] == "SCCS":
del namelist[i]
else:
i = i + 1
# Find .odesc files and record them.
for name in namelist:
if name.endswith('.odesc'):
objname = name[:name.rindex('.odesc')]
path = os.path.join(dirpath, name)
if odesc_file.has_key(objname):
print "Warning: duplicate object names:", \
odesc_file[objname], path
odesc_file[objname] = path
odesc_loaded[objname] = False
# Regular expression string for parsing .odesc files.
file_re_string = r'''
^OBJECT: \s* (\w+) \s* \( \s* (\w+) \s* \)
\s*
^PARAMS: \s*\n ( (\s+.*\n)* )
'''
# Compiled regular expression object.
file_re = re.compile(file_re_string, re.MULTILINE | re.VERBOSE)
# .odesc file parsing function. Takes a filename and returns tuple of
# object name, object base, and parameter description section.
def parse_file(path):
f = open(path, 'r').read()
m = file_re.search(f)
if not m:
print "Can't parse", path
sys.exit(1)
return (m.group(1), m.group(2), m.group(3))
# Define SimObject class based on description in specified filename.
# Class itself is empty except for _name attribute; parameter
# descriptions will be loaded later. Will recurse to define base
# classes as needed before defining specified class.
def def_class(path):
# load & parse file
(obj, parent, params) = parse_file(path)
# check to see if base class is defined yet; define it if not
if not odesc_loaded.has_key(parent):
print "No .odesc file found for", parent
sys.exit(1)
if not odesc_loaded[parent]:
def_class(odesc_file[parent])
# define the class. The _name attribute of the class lets us
# track the actual SimObject class name even when we derive new
# subclasses in scripts (to provide new parameter value settings).
s = "class %s(%s): _name = '%s'" % (obj, parent, obj)
try:
# execute in global namespace, so new class will be globally
# visible
exec s in globals()
except Exception, exc:
print "Object error in %s:" % path, exc
# mark this file as loaded
odesc_loaded[obj] = True
# Munge an arbitrary Python code string to get it to execute (mostly
# dealing with indentation). Stolen from isa_parser.py... see
# comments there for a more detailed description.
def fixPythonIndentation(s):
# get rid of blank lines first
s = re.sub(r'(?m)^\s*\n', '', s);
if (s != '' and re.match(r'[ \t]', s[0])):
s = 'if 1:\n' + s
return s
# Load parameter descriptions from .odesc file. Object class must
# already be defined.
def def_params(path):
# load & parse file
(obj_name, parent_name, param_code) = parse_file(path)
# initialize param dict
param_dict = {}
# execute parameter descriptions.
try:
# "in globals(), param_dict" makes exec use the current
# globals as the global namespace (so all of the Param
# etc. objects are visible) and param_dict as the local
# namespace (so the newly defined parameter variables will be
# entered into param_dict).
exec fixPythonIndentation(param_code) in globals(), param_dict
except Exception, exc:
print "Param error in %s:" % path, exc
return
# Convert object name string to Python class object
obj = eval(obj_name)
# Set the object's parameter description dictionary (see MetaConfigNode).
obj.set_param_dict(param_dict)
# Walk directory tree to find .odesc files.
# Someday we'll have to make the root path an argument instead of
# hard-coding it. For now the assumption is you're running this in
# util/config.
root = '../..'
os.path.walk(root, find_odescs, None)
# Iterate through file dictionary and define classes.
for objname, path in odesc_file.iteritems():
if not odesc_loaded[objname]:
def_class(path)
sim_object_list = odesc_loaded.keys()
sim_object_list.sort()
# Iterate through files again and load parameters.
for path in odesc_file.itervalues():
def_params(path)
#####################################################################
# Hook to generate C++ parameter code.
def gen_sim_code(file):
for objname in sim_object_list:
print >> file, eval("%s._sim_code()" % objname)
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(*objs):
for obj in objs:
obj._instantiate()