cb0cf2dd8a
--HG-- extra : convert_revision : 77f475b156d81c03a2811818fa23593d5615c685
232 lines
4.8 KiB
C++
232 lines
4.8 KiB
C++
/*
|
|
* Copyright (c) 2001, 2003-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Nathan Binkert
|
|
*/
|
|
|
|
#ifndef __INTMATH_HH__
|
|
#define __INTMATH_HH__
|
|
|
|
#include <assert.h>
|
|
|
|
#include "sim/host.hh"
|
|
|
|
// Returns the prime number one less than n.
|
|
int prevPrime(int n);
|
|
|
|
// Determine if a number is prime
|
|
template <class T>
|
|
inline bool
|
|
isPrime(T n)
|
|
{
|
|
T i;
|
|
|
|
if (n == 2 || n == 3)
|
|
return true;
|
|
|
|
// Don't try every odd number to prove if it is a prime.
|
|
// Toggle between every 2nd and 4th number.
|
|
// (This is because every 6th odd number is divisible by 3.)
|
|
for (i = 5; i*i <= n; i += 6) {
|
|
if (((n % i) == 0 ) || ((n % (i + 2)) == 0) ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
leastSigBit(T n)
|
|
{
|
|
return n & ~(n - 1);
|
|
}
|
|
|
|
template <class T>
|
|
inline bool
|
|
isPowerOf2(T n)
|
|
{
|
|
return n != 0 && leastSigBit(n) == n;
|
|
}
|
|
|
|
inline int
|
|
floorLog2(unsigned x)
|
|
{
|
|
assert(x > 0);
|
|
|
|
int y = 0;
|
|
|
|
if (x & 0xffff0000) { y += 16; x >>= 16; }
|
|
if (x & 0x0000ff00) { y += 8; x >>= 8; }
|
|
if (x & 0x000000f0) { y += 4; x >>= 4; }
|
|
if (x & 0x0000000c) { y += 2; x >>= 2; }
|
|
if (x & 0x00000002) { y += 1; }
|
|
|
|
return y;
|
|
}
|
|
|
|
inline int
|
|
floorLog2(unsigned long x)
|
|
{
|
|
assert(x > 0);
|
|
|
|
int y = 0;
|
|
|
|
#if defined(__LP64__)
|
|
if (x & ULL(0xffffffff00000000)) { y += 32; x >>= 32; }
|
|
#endif
|
|
if (x & 0xffff0000) { y += 16; x >>= 16; }
|
|
if (x & 0x0000ff00) { y += 8; x >>= 8; }
|
|
if (x & 0x000000f0) { y += 4; x >>= 4; }
|
|
if (x & 0x0000000c) { y += 2; x >>= 2; }
|
|
if (x & 0x00000002) { y += 1; }
|
|
|
|
return y;
|
|
}
|
|
|
|
inline int
|
|
floorLog2(unsigned long long x)
|
|
{
|
|
assert(x > 0);
|
|
|
|
int y = 0;
|
|
|
|
if (x & ULL(0xffffffff00000000)) { y += 32; x >>= 32; }
|
|
if (x & ULL(0x00000000ffff0000)) { y += 16; x >>= 16; }
|
|
if (x & ULL(0x000000000000ff00)) { y += 8; x >>= 8; }
|
|
if (x & ULL(0x00000000000000f0)) { y += 4; x >>= 4; }
|
|
if (x & ULL(0x000000000000000c)) { y += 2; x >>= 2; }
|
|
if (x & ULL(0x0000000000000002)) { y += 1; }
|
|
|
|
return y;
|
|
}
|
|
|
|
inline int
|
|
floorLog2(int x)
|
|
{
|
|
assert(x > 0);
|
|
return floorLog2((unsigned)x);
|
|
}
|
|
|
|
inline int
|
|
floorLog2(long x)
|
|
{
|
|
assert(x > 0);
|
|
return floorLog2((unsigned long)x);
|
|
}
|
|
|
|
inline int
|
|
floorLog2(long long x)
|
|
{
|
|
assert(x > 0);
|
|
return floorLog2((unsigned long long)x);
|
|
}
|
|
|
|
template <class T>
|
|
inline int
|
|
ceilLog2(T n)
|
|
{
|
|
if (n == 1)
|
|
return 0;
|
|
|
|
return floorLog2(n - (T)1) + 1;
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
floorPow2(T n)
|
|
{
|
|
return (T)1 << floorLog2(n);
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
ceilPow2(T n)
|
|
{
|
|
return (T)1 << ceilLog2(n);
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
divCeil(T a, T b)
|
|
{
|
|
return (a + b - 1) / b;
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
roundUp(T val, int align)
|
|
{
|
|
T mask = (T)align - 1;
|
|
return (val + mask) & ~mask;
|
|
}
|
|
|
|
template <class T>
|
|
inline T
|
|
roundDown(T val, int align)
|
|
{
|
|
T mask = (T)align - 1;
|
|
return val & ~mask;
|
|
}
|
|
|
|
inline bool
|
|
isHex(char c)
|
|
{
|
|
return c >= '0' && c <= '9' ||
|
|
c >= 'A' && c <= 'F' ||
|
|
c >= 'a' && c <= 'f';
|
|
}
|
|
|
|
inline bool
|
|
isOct(char c)
|
|
{
|
|
return c >= '0' && c <= '7';
|
|
}
|
|
|
|
inline bool
|
|
isDec(char c)
|
|
{
|
|
return c >= '0' && c <= '9';
|
|
}
|
|
|
|
inline int
|
|
hex2Int(char c)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
return (c - '0');
|
|
|
|
if (c >= 'A' && c <= 'F')
|
|
return (c - 'A') + 10;
|
|
|
|
if (c >= 'a' && c <= 'f')
|
|
return (c - 'a') + 10;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // __INTMATH_HH__
|