gem5/src/arch/alpha/isa/mem.isa
Korey Sewell db2b721380 inorder-tlb-cunit: merge the TLB as implicit to any memory access
TLBUnit no longer used and we also get rid of memAccSize and memAccFlags functions added to ISA and StaticInst
since TLB is not a separate resource to acquire. Instead, TLB access is done before any read/write to memory
and the result is checked before it's sent out to memory.
* * *
2009-05-12 15:01:16 -04:00

592 lines
17 KiB
C++

// -*- mode:c++ -*-
// Copyright (c) 2003-2005 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Steve Reinhardt
// Kevin Lim
////////////////////////////////////////////////////////////////////
//
// Memory-format instructions: LoadAddress, Load, Store
//
output header {{
/**
* Base class for general Alpha memory-format instructions.
*/
class Memory : public AlphaStaticInst
{
protected:
/// Memory request flags. See mem_req_base.hh.
Request::Flags memAccessFlags;
/// Constructor
Memory(const char *mnem, ExtMachInst _machInst, OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
/**
* Base class for memory-format instructions using a 32-bit
* displacement (i.e. most of them).
*/
class MemoryDisp32 : public Memory
{
protected:
/// Displacement for EA calculation (signed).
int32_t disp;
/// Constructor.
MemoryDisp32(const char *mnem, ExtMachInst _machInst, OpClass __opClass)
: Memory(mnem, _machInst, __opClass),
disp(MEMDISP)
{
}
};
/**
* Base class for a few miscellaneous memory-format insts
* that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
* None of these instructions has a destination register either.
*/
class MemoryNoDisp : public Memory
{
protected:
/// Constructor
MemoryNoDisp(const char *mnem, ExtMachInst _machInst, OpClass __opClass)
: Memory(mnem, _machInst, __opClass)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
}
std::string
MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s (r%d)", mnemonic, RB);
}
}};
def format LoadAddress(code) {{
iop = InstObjParams(name, Name, 'MemoryDisp32', code)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def template LoadStoreDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
public:
/// Constructor.
%(class_name)s(ExtMachInst machInst);
%(BasicExecDeclare)s
%(EACompDeclare)s
%(InitiateAccDeclare)s
%(CompleteAccDeclare)s
};
}};
def template EACompDeclare {{
Fault eaComp(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
def template InitiateAccDeclare {{
Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
def template CompleteAccDeclare {{
Fault completeAcc(PacketPtr, %(CPU_exec_context)s *,
Trace::InstRecord *) const;
}};
def template LoadStoreConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
}
}};
def template EACompExecute {{
Fault %(class_name)s::eaComp(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(op_wb)s;
xc->setEA(EA);
}
return fault;
}
}};
def template LoadExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
fault = xc->read(EA, (uint%(mem_acc_size)d_t&)Mem, memAccessFlags);
%(memacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template LoadInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_src_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
fault = xc->read(EA, (uint%(mem_acc_size)d_t &)Mem, memAccessFlags);
}
return fault;
}
}};
def template LoadCompleteAcc {{
Fault %(class_name)s::completeAcc(PacketPtr pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
Mem = pkt->get<typeof(Mem)>();
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, NULL);
if (traceData) { traceData->setData(Mem); }
}
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreCondExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, &write_result);
if (traceData) { traceData->setData(Mem); }
}
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, NULL);
if (traceData) { traceData->setData(Mem); }
}
return fault;
}
}};
def template StoreCompleteAcc {{
Fault %(class_name)s::completeAcc(PacketPtr pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_dest_decl)s;
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreCondCompleteAcc {{
Fault %(class_name)s::completeAcc(PacketPtr pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_dest_decl)s;
uint64_t write_result = pkt->req->getExtraData();
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template MiscExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
return NoFault;
}
}};
def template MiscInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
warn("initiateAcc undefined: Misc instruction does not support split "
"access method!");
return NoFault;
}
}};
def template MiscCompleteAcc {{
Fault %(class_name)s::completeAcc(PacketPtr pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
warn("completeAcc undefined: Misc instruction does not support split "
"access method!");
return NoFault;
}
}};
// load instructions use Ra as dest, so check for
// Ra == 31 to detect nops
def template LoadNopCheckDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (RA == 31) {
i = makeNop(i);
}
return i;
}
}};
// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
def template LoadPrefetchCheckDecode {{
{
if (RA != 31) {
return new %(class_name)s(machInst);
}
else {
return new %(class_name)sPrefetch(machInst);
}
}
}};
let {{
def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
postacc_code = '', base_class = 'MemoryDisp32',
decode_template = BasicDecode, exec_template_base = ''):
# Make sure flags are in lists (convert to lists if not).
mem_flags = makeList(mem_flags)
inst_flags = makeList(inst_flags)
# add hook to get effective addresses into execution trace output.
ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
# Some CPU models execute the memory operation as an atomic unit,
# while others want to separate them into an effective address
# computation and a memory access operation. As a result, we need
# to generate three StaticInst objects. Note that the latter two
# are nested inside the larger "atomic" one.
# Generate InstObjParams for each of the three objects. Note that
# they differ only in the set of code objects contained (which in
# turn affects the object's overall operand list).
iop = InstObjParams(name, Name, base_class,
{ 'ea_code':ea_code, 'memacc_code':memacc_code, 'postacc_code':postacc_code },
inst_flags)
memacc_iop = InstObjParams(name, Name, base_class,
{ 'memacc_code':memacc_code, 'postacc_code':postacc_code },
inst_flags)
if mem_flags:
mem_flags = [ 'Request::%s' % flag for flag in mem_flags ]
s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
iop.constructor += s
memacc_iop.constructor += s
# select templates
# The InitiateAcc template is the same for StoreCond templates as the
# corresponding Store template..
StoreCondInitiateAcc = StoreInitiateAcc
fullExecTemplate = eval(exec_template_base + 'Execute')
initiateAccTemplate = eval(exec_template_base + 'InitiateAcc')
completeAccTemplate = eval(exec_template_base + 'CompleteAcc')
# (header_output, decoder_output, decode_block, exec_output)
return (LoadStoreDeclare.subst(iop),
LoadStoreConstructor.subst(iop),
decode_template.subst(iop),
fullExecTemplate.subst(iop)
+ EACompExecute.subst(iop)
+ initiateAccTemplate.subst(iop)
+ completeAccTemplate.subst(iop))
}};
def format LoadOrNop(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
decode_template = LoadNopCheckDecode,
exec_template_base = 'Load')
}};
// Note that the flags passed in apply only to the prefetch version
def format LoadOrPrefetch(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], pf_flags = [], inst_flags = []) {{
# declare the load instruction object and generate the decode block
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
decode_template = LoadPrefetchCheckDecode,
exec_template_base = 'Load')
# Declare the prefetch instruction object.
# Make sure flag args are lists so we can mess with them.
mem_flags = makeList(mem_flags)
pf_flags = makeList(pf_flags)
inst_flags = makeList(inst_flags)
pf_mem_flags = mem_flags + pf_flags + ['NO_FAULT']
pf_inst_flags = inst_flags + ['IsMemRef', 'IsLoad',
'IsDataPrefetch', 'MemReadOp']
(pf_header_output, pf_decoder_output, _, pf_exec_output) = \
LoadStoreBase(name, Name + 'Prefetch', ea_code,
'xc->prefetch(EA, memAccessFlags);',
pf_mem_flags, pf_inst_flags, exec_template_base = 'Misc')
header_output += pf_header_output
decoder_output += pf_decoder_output
exec_output += pf_exec_output
}};
def format Store(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
exec_template_base = 'Store')
}};
def format StoreCond(memacc_code, postacc_code,
ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
postacc_code, exec_template_base = 'StoreCond')
}};
// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
def format MiscPrefetch(ea_code, memacc_code,
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
base_class = 'MemoryNoDisp', exec_template_base = 'Misc')
}};