gem5/src/dev/arm/gic.cc
2011-08-19 15:08:08 -05:00

838 lines
26 KiB
C++

/*
* Copyright (c) 2010 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Prakash Ramrakhyani
*/
#include "base/trace.hh"
#include "debug/Checkpoint.hh"
#include "debug/GIC.hh"
#include "debug/IPI.hh"
#include "dev/arm/gic.hh"
#include "dev/arm/realview.hh"
#include "dev/terminal.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
Gic::Gic(const Params *p)
: PioDevice(p),distAddr(p->dist_addr), cpuAddr(p->cpu_addr),
distPioDelay(p->dist_pio_delay), cpuPioDelay(p->cpu_pio_delay),
intLatency(p->int_latency), enabled(false), itLines(p->it_lines)
{
itLinesLog2 = ceilLog2(itLines);
for (int x = 0; x < CPU_MAX; x++) {
cpuEnabled[x] = false;
cpuPriority[x] = 0xff;
cpuBpr[x] = 0;
// Initialize cpu highest int
cpuHighestInt[x] = SPURIOUS_INT;
postIntEvent[x] = new PostIntEvent(x, p->platform);
}
DPRINTF(Interrupt, "cpuEnabled[0]=%d cpuEnabled[1]=%d\n", cpuEnabled[0],
cpuEnabled[1]);
for (int x = 0; x < INT_BITS_MAX; x++) {
intEnabled[x] = 0;
pendingInt[x] = 0;
activeInt[x] = 0;
}
for (int x = 0; x < INT_LINES_MAX; x++) {
intPriority[x] = 0;
cpuTarget[x] = 0;
}
for (int x = 0; x < INT_BITS_MAX*2; x++) {
intConfig[x] = 0;
}
for (int x = 0; x < SGI_MAX; x++) {
cpuSgiActive[x] = 0;
cpuSgiPending[x] = 0;
}
for (int x = 0; x < CPU_MAX; x++) {
cpuPpiActive[x] = 0;
cpuPpiPending[x] = 0;
}
for (int i = 0; i < CPU_MAX; i++) {
for (int j = 0; j < (SGI_MAX + PPI_MAX); j++) {
bankedIntPriority[i][j] = 0;
}
}
RealView *rv = dynamic_cast<RealView*>(p->platform);
assert(rv);
rv->setGic(this);
}
Tick
Gic::read(PacketPtr pkt)
{
Addr addr = pkt->getAddr();
if (addr >= distAddr && addr < distAddr + DIST_SIZE)
return readDistributor(pkt);
else if (addr >= cpuAddr && addr < cpuAddr + CPU_SIZE)
return readCpu(pkt);
else
panic("Read to unknown address %#x\n", pkt->getAddr());
}
Tick
Gic::write(PacketPtr pkt)
{
Addr addr = pkt->getAddr();
if (addr >= distAddr && addr < distAddr + DIST_SIZE)
return writeDistributor(pkt);
else if (addr >= cpuAddr && addr < cpuAddr + CPU_SIZE)
return writeCpu(pkt);
else
panic("Write to unknown address %#x\n", pkt->getAddr());
}
Tick
Gic::readDistributor(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - distAddr;
pkt->allocate();
int ctx_id = pkt->req->contextId();
DPRINTF(GIC, "gic distributor read register %#x\n", daddr);
if (daddr >= ICDISER_ST && daddr < ICDISER_ED + 4) {
assert((daddr-ICDISER_ST) >> 2 < 32);
pkt->set<uint32_t>(intEnabled[(daddr-ICDISER_ST)>>2]);
goto done;
}
if (daddr >= ICDICER_ST && daddr < ICDICER_ED + 4) {
assert((daddr-ICDICER_ST) >> 2 < 32);
pkt->set<uint32_t>(intEnabled[(daddr-ICDICER_ST)>>2]);
goto done;
}
if (daddr >= ICDISPR_ST && daddr < ICDISPR_ED + 4) {
assert((daddr-ICDISPR_ST) >> 2 < 32);
pkt->set<uint32_t>(pendingInt[(daddr-ICDISPR_ST)>>2]);
goto done;
}
if (daddr >= ICDICPR_ST && daddr < ICDICPR_ED + 4) {
assert((daddr-ICDICPR_ST) >> 2 < 32);
pkt->set<uint32_t>(pendingInt[(daddr-ICDICPR_ST)>>2]);
goto done;
}
if (daddr >= ICDABR_ST && daddr < ICDABR_ED + 4) {
assert((daddr-ICDABR_ST) >> 2 < 32);
pkt->set<uint32_t>(activeInt[(daddr-ICDABR_ST)>>2]);
goto done;
}
if (daddr >= ICDIPR_ST && daddr < ICDIPR_ED + 4) {
Addr int_num;
int_num = daddr - ICDIPR_ST;
assert(int_num < INT_LINES_MAX);
DPRINTF(Interrupt, "Reading interrupt priority at int# %#x \n",int_num);
uint8_t* int_p;
if (int_num < (SGI_MAX + PPI_MAX))
int_p = bankedIntPriority[ctx_id];
else
int_p = intPriority;
switch (pkt->getSize()) {
case 1:
pkt->set<uint8_t>(int_p[int_num]);
break;
case 2:
pkt->set<uint16_t>(int_p[int_num] |
int_p[int_num+1] << 8);
break;
case 4:
pkt->set<uint32_t>(int_p[int_num] |
int_p[int_num+1] << 8 |
int_p[int_num+2] << 16 |
int_p[int_num+3] << 24);
break;
default:
panic("Invalid size while reading priority regs in GIC: %d\n",
pkt->getSize());
}
goto done;
}
if (daddr >= ICDIPTR_ST && daddr < ICDIPTR_ED + 4) {
Addr int_num;
int_num = (daddr-ICDIPTR_ST) ;
DPRINTF(GIC, "Reading processor target register for int# %#x \n",
int_num);
assert(int_num < INT_LINES_MAX);
// First 31 interrupts only target single processor (SGI)
if (int_num > 31) {
if (pkt->getSize() == 1) {
pkt->set<uint8_t>(cpuTarget[int_num]);
} else {
assert(pkt->getSize() == 4);
int_num = mbits(int_num, 31, 2);
pkt->set<uint32_t>(cpuTarget[int_num] |
cpuTarget[int_num+1] << 8 |
cpuTarget[int_num+2] << 16 |
cpuTarget[int_num+3] << 24) ;
}
} else {
int ctx_id = pkt->req->contextId();
assert(ctx_id < sys->numRunningContexts());
pkt->set<uint32_t>(ctx_id);
}
goto done;
}
if (daddr >= ICDICFR_ST && daddr < ICDICFR_ED + 4) {
assert((daddr-ICDICFR_ST) >> 2 < 64);
/** @todo software generated interrutps and PPIs
* can't be configured in some ways
*/
pkt->set<uint32_t>(intConfig[(daddr-ICDICFR_ST)>>2]);
goto done;
}
switch(daddr) {
case ICDDCR:
pkt->set<uint32_t>(enabled);
break;
case ICDICTR:
uint32_t tmp;
tmp = ((sys->numRunningContexts() - 1) << 5) |
(itLines/INT_BITS_MAX -1);
pkt->set<uint32_t>(tmp);
break;
default:
panic("Tried to read Gic distributor at offset %#x\n", daddr);
break;
}
done:
pkt->makeAtomicResponse();
return distPioDelay;
}
Tick
Gic::readCpu(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - cpuAddr;
pkt->allocate();
assert(pkt->req->hasContextId());
int ctx_id = pkt->req->contextId();
assert(ctx_id < sys->numRunningContexts());
DPRINTF(GIC, "gic cpu read register %#x cpu context: %d\n", daddr,
ctx_id);
switch(daddr) {
case ICCICR:
pkt->set<uint32_t>(cpuEnabled[ctx_id]);
break;
case ICCPMR:
pkt->set<uint32_t>(cpuPriority[ctx_id]);
break;
case ICCBPR:
pkt->set<uint32_t>(cpuBpr[ctx_id]);
break;
case ICCIAR:
if (enabled && cpuEnabled[ctx_id]) {
int active_int = cpuHighestInt[ctx_id];
IAR iar = 0;
iar.ack_id = active_int;
iar.cpu_id = 0;
if (active_int < SGI_MAX) {
// this is a software interrupt from another CPU
if (!cpuSgiPending[active_int])
panic("Interrupt %d active but no CPU generated it?\n",
active_int);
for (int x = 0; x < CPU_MAX; x++) {
// See which CPU generated the interrupt
uint8_t cpugen =
bits(cpuSgiPending[active_int], 7 + 8 * x, 8 * x);
if (cpugen & (1 << ctx_id)) {
iar.cpu_id = x;
break;
}
}
uint64_t sgi_num = ULL(1) << (ctx_id + 8 * iar.cpu_id);
cpuSgiActive[iar.ack_id] |= sgi_num;
cpuSgiPending[iar.ack_id] &= ~sgi_num;
} else if (active_int < (SGI_MAX + PPI_MAX) ) {
uint32_t int_num = 1 << (cpuHighestInt[ctx_id] - SGI_MAX);
cpuPpiActive[ctx_id] |= int_num;
updateRunPri();
cpuPpiPending[ctx_id] &= ~int_num;
} else {
uint32_t int_num = 1 << intNumToBit(cpuHighestInt[ctx_id]);
activeInt[intNumToWord(cpuHighestInt[ctx_id])] |= int_num;
updateRunPri();
pendingInt[intNumToWord(cpuHighestInt[ctx_id])] &= ~int_num;
}
DPRINTF(Interrupt,"CPU %d reading IAR.id=%d IAR.cpu=%d, iar=0x%x\n",
ctx_id, iar.ack_id, iar.cpu_id, iar);
cpuHighestInt[ctx_id] = SPURIOUS_INT;
updateIntState(-1);
pkt->set<uint32_t>(iar);
platform->intrctrl->clear(ctx_id, ArmISA::INT_IRQ, 0);
} else {
pkt->set<uint32_t>(SPURIOUS_INT);
}
break;
case ICCRPR:
pkt->set<uint32_t>(iccrpr[0]);
break;
case ICCHPIR:
pkt->set<uint32_t>(0);
panic("Need to implement HPIR");
break;
default:
panic("Tried to read Gic cpu at offset %#x\n", daddr);
break;
}
pkt->makeAtomicResponse();
return cpuPioDelay;
}
Tick
Gic::writeDistributor(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - distAddr;
pkt->allocate();
assert(pkt->req->hasContextId());
int ctx_id = pkt->req->contextId();
DPRINTF(GIC, "gic distributor write register %#x size %#x value %#x \n",
daddr, pkt->getSize(), pkt->get<uint32_t>());
if (daddr >= ICDISER_ST && daddr < ICDISER_ED + 4) {
assert((daddr-ICDISER_ST) >> 2 < 32);
intEnabled[(daddr-ICDISER_ST) >> 2] |= pkt->get<uint32_t>();
goto done;
}
if (daddr >= ICDICER_ST && daddr < ICDICER_ED + 4) {
assert((daddr-ICDICER_ST) >> 2 < 32);
intEnabled[(daddr-ICDICER_ST) >> 2] &= ~pkt->get<uint32_t>();
goto done;
}
if (daddr >= ICDISPR_ST && daddr < ICDISPR_ED + 4) {
assert((daddr-ICDISPR_ST) >> 2 < 32);
pendingInt[(daddr-ICDISPR_ST) >> 2] |= pkt->get<uint32_t>();
pendingInt[0] &= SGI_MASK; // Don't allow SGIs to be changed
updateIntState((daddr-ICDISPR_ST) >> 2);
goto done;
}
if (daddr >= ICDICPR_ST && daddr < ICDICPR_ED + 4) {
assert((daddr-ICDICPR_ST) >> 2 < 32);
pendingInt[(daddr-ICDICPR_ST) >> 2] &= ~pkt->get<uint32_t>();
pendingInt[0] &= SGI_MASK; // Don't allow SGIs to be changed
updateIntState((daddr-ICDICPR_ST) >> 2);
goto done;
}
if (daddr >= ICDIPR_ST && daddr < ICDIPR_ED + 4) {
Addr int_num = daddr - ICDIPR_ST;
assert(int_num < INT_LINES_MAX);
uint8_t* int_p;
if (int_num < (SGI_MAX + PPI_MAX))
int_p = bankedIntPriority[ctx_id];
else
int_p = intPriority;
uint32_t tmp;
switch(pkt->getSize()) {
case 1:
tmp = pkt->get<uint8_t>();
int_p[int_num] = bits(tmp, 7, 0);
break;
case 2:
tmp = pkt->get<uint16_t>();
int_p[int_num] = bits(tmp, 7, 0);
int_p[int_num + 1] = bits(tmp, 15, 8);
break;
case 4:
tmp = pkt->get<uint32_t>();
int_p[int_num] = bits(tmp, 7, 0);
int_p[int_num + 1] = bits(tmp, 15, 8);
int_p[int_num + 2] = bits(tmp, 23, 16);
int_p[int_num + 3] = bits(tmp, 31, 24);
break;
default:
panic("Invalid size when writing to priority regs in Gic: %d\n",
pkt->getSize());
}
updateIntState(-1);
updateRunPri();
goto done;
}
if (daddr >= ICDIPTR_ST && daddr < ICDIPTR_ED + 4) {
Addr int_num = (daddr-ICDIPTR_ST) ;
assert(int_num < INT_LINES_MAX);
// First 31 interrupts only target single processor
if (int_num >= SGI_MAX) {
if (pkt->getSize() == 1) {
uint8_t tmp = pkt->get<uint8_t>();
cpuTarget[int_num] = tmp & 0xff;
} else {
assert (pkt->getSize() == 4);
int_num = mbits(int_num, 31, 2);
uint32_t tmp = pkt->get<uint32_t>();
cpuTarget[int_num] = bits(tmp, 7, 0);
cpuTarget[int_num+1] = bits(tmp, 15, 8);
cpuTarget[int_num+2] = bits(tmp, 23, 16);
cpuTarget[int_num+3] = bits(tmp, 31, 24);
}
updateIntState((daddr-ICDIPTR_ST)>>2);
}
goto done;
}
if (daddr >= ICDICFR_ST && daddr < ICDICFR_ED + 4) {
assert((daddr-ICDICFR_ST) >> 2 < 64);
intConfig[(daddr-ICDICFR_ST)>>2] = pkt->get<uint32_t>();
if (pkt->get<uint32_t>() & NN_CONFIG_MASK)
warn("GIC N:N mode selected and not supported at this time\n");
goto done;
}
switch(daddr) {
case ICDDCR:
enabled = pkt->get<uint32_t>();
DPRINTF(Interrupt, "Distributor enable flag set to = %d\n", enabled);
break;
case ICDSGIR:
softInt(ctx_id, pkt->get<uint32_t>());
break;
default:
panic("Tried to write Gic distributor at offset %#x\n", daddr);
break;
}
done:
pkt->makeAtomicResponse();
return distPioDelay;
}
Tick
Gic::writeCpu(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - cpuAddr;
pkt->allocate();
assert(pkt->req->hasContextId());
int ctx_id = pkt->req->contextId();
IAR iar;
DPRINTF(GIC, "gic cpu write register cpu:%d %#x val: %#x\n",
ctx_id, daddr, pkt->get<uint32_t>());
switch(daddr) {
case ICCICR:
cpuEnabled[ctx_id] = pkt->get<uint32_t>();
break;
case ICCPMR:
cpuPriority[ctx_id] = pkt->get<uint32_t>();
break;
case ICCBPR:
cpuBpr[ctx_id] = pkt->get<uint32_t>();
break;
case ICCEOIR:
iar = pkt->get<uint32_t>();
if (iar.ack_id < SGI_MAX) {
// Clear out the bit that corrseponds to the cleared int
uint64_t clr_int = ULL(1) << (ctx_id + 8 * iar.cpu_id);
if (!(cpuSgiActive[iar.ack_id] & clr_int))
panic("Done handling a SGI that isn't active?\n");
cpuSgiActive[iar.ack_id] &= ~clr_int;
} else if (iar.ack_id < (SGI_MAX + PPI_MAX) ) {
uint32_t int_num = 1 << (iar.ack_id - SGI_MAX);
if (!(cpuPpiActive[ctx_id] & int_num))
panic("CPU %d Done handling a PPI interrupt that isn't active?\n", ctx_id);
cpuPpiActive[ctx_id] &= ~int_num;
} else {
uint32_t int_num = 1 << intNumToBit(iar.ack_id);
if (!(activeInt[intNumToWord(iar.ack_id)] & int_num))
panic("Done handling interrupt that isn't active?\n");
activeInt[intNumToWord(iar.ack_id)] &= ~int_num;
}
updateRunPri();
DPRINTF(Interrupt, "CPU %d done handling intr IAR = %d from cpu %d\n",
ctx_id, iar.ack_id, iar.cpu_id);
break;
default:
panic("Tried to write Gic cpu at offset %#x\n", daddr);
break;
}
if (cpuEnabled[ctx_id]) updateIntState(-1);
pkt->makeAtomicResponse();
return cpuPioDelay;
}
void
Gic::softInt(int ctx_id, SWI swi)
{
switch (swi.list_type) {
case 1:
// interrupt all
uint8_t cpu_list;
cpu_list = 0;
for (int x = 0; x < CPU_MAX; x++)
cpu_list |= cpuEnabled[x] ? 1 << x : 0;
swi.cpu_list = cpu_list;
break;
case 2:
// interrupt requesting cpu only
swi.cpu_list = 1 << ctx_id;
break;
// else interrupt cpus specified
}
DPRINTF(IPI, "Generating softIRQ from CPU %d for %#x\n", ctx_id,
swi.cpu_list);
for (int i = 0; i < CPU_MAX; i++) {
DPRINTF(IPI, "Processing CPU %d\n", i);
if (!cpuEnabled[i])
continue;
if (swi.cpu_list & (1 << i))
cpuSgiPending[swi.sgi_id] |= (1 << i) << (8 * ctx_id);
DPRINTF(IPI, "SGI[%d]=%#x\n", swi.sgi_id, cpuSgiPending[swi.sgi_id]);
}
updateIntState(-1);
}
uint64_t
Gic::genSwiMask(int cpu)
{
if (cpu > 7)
panic("Invalid CPU ID\n");
return ULL(0x0101010101010101) << cpu;
}
void
Gic::updateIntState(int hint)
{
for (int cpu = 0; cpu < CPU_MAX; cpu++) {
if (!cpuEnabled[cpu])
continue;
if (cpu >= sys->numContexts())
break;
/*@todo use hint to do less work. */
int highest_int = SPURIOUS_INT;
// Priorities below that set in ICCPMR can be ignored
uint8_t highest_pri = cpuPriority[cpu];
// Check SGIs
for (int swi = 0; swi < SGI_MAX; swi++) {
if (!cpuSgiPending[swi])
continue;
if (cpuSgiPending[swi] & genSwiMask(cpu))
if (highest_pri > bankedIntPriority[cpu][swi]) {
highest_pri = bankedIntPriority[cpu][swi];
highest_int = swi;
}
}
// Check PPIs
if (cpuPpiPending[cpu]) {
for (int ppi = 0; ppi < PPI_MAX; ppi++) {
if (cpuPpiPending[cpu] & (1 << ppi))
if (highest_pri > bankedIntPriority[cpu][SGI_MAX + ppi]) {
highest_pri = bankedIntPriority[cpu][SGI_MAX + ppi];
highest_int = SGI_MAX + ppi;
}
}
}
bool mp_sys = sys->numRunningContexts() > 1;
// Check other ints
for (int x = 0; x < (itLines/INT_BITS_MAX); x++) {
if (intEnabled[x] & pendingInt[x]) {
for (int y = 0; y < INT_BITS_MAX; y++) {
uint32_t int_nm = x * INT_BITS_MAX + y;
DPRINTF(GIC, "Checking for interrupt# %d \n",int_nm);
/* Set current pending int as highest int for current cpu
if the interrupt's priority higher than current prioirty
and if currrent cpu is the target (for mp configs only)
*/
if ((bits(intEnabled[x], y) & bits(pendingInt[x], y)) &&
(intPriority[int_nm] < highest_pri))
if ( (!mp_sys) || (cpuTarget[int_nm] & (1 << cpu))) {
highest_pri = intPriority[int_nm];
highest_int = int_nm;
}
}
}
}
cpuHighestInt[cpu] = highest_int;
if (highest_int == SPURIOUS_INT)
continue;
/* @todo make this work for more than one cpu, need to handle 1:N, N:N
* models */
if (enabled && cpuEnabled[cpu] && (highest_pri < cpuPriority[cpu]) &&
!(activeInt[intNumToWord(highest_int)]
& (1 << intNumToBit(highest_int)))) {
DPRINTF(Interrupt, "Posting interrupt %d to cpu%d\n", highest_int,
cpu);
postInt(cpu, curTick() + intLatency);
}
}
}
void
Gic::updateRunPri()
{
for (int cpu = 0; cpu < CPU_MAX; cpu++) {
if (!cpuEnabled[cpu])
continue;
uint8_t maxPriority = 0xff;
for (int i = 0; i < itLines; i++){
if (i < SGI_MAX) {
if ((cpuSgiActive[i] & genSwiMask(cpu)) &&
(bankedIntPriority[cpu][i] < maxPriority))
maxPriority = bankedIntPriority[cpu][i];
} else if (i < (SGI_MAX + PPI_MAX)) {
if ((cpuPpiActive[cpu] & ( 1 << (i - SGI_MAX))) &&
(bankedIntPriority[cpu][i] < maxPriority))
maxPriority = bankedIntPriority[cpu][i];
} else {
if (activeInt[intNumToWord(i)] & (1 << intNumToBit(i)))
if (intPriority[i] < maxPriority)
maxPriority = intPriority[i];
}
}
iccrpr[cpu] = maxPriority;
}
}
void
Gic::sendInt(uint32_t num)
{
DPRINTF(Interrupt, "Received Interupt number %d, cpuTarget %#x: \n",
num, cpuTarget[num]);
if (cpuTarget[num] & (cpuTarget[num] - 1))
panic("Multiple targets for peripheral interrupts is not supported\n");
pendingInt[intNumToWord(num)] |= 1 << intNumToBit(num);
updateIntState(intNumToWord(num));
}
void
Gic::sendPPInt(uint32_t num, uint32_t cpu)
{
DPRINTF(Interrupt, "Received Interrupt number %d, cpuTarget %#x: \n",
num, cpu);
cpuPpiPending[cpu] |= 1 << (num - SGI_MAX);
updateIntState(intNumToWord(num));
}
void
Gic::clearInt(uint32_t number)
{
/* @todo assume edge triggered only at the moment. Nothing to do. */
}
void
Gic::postInt(uint32_t cpu, Tick when)
{
if (!(postIntEvent[cpu]->scheduled()))
eventq->schedule(postIntEvent[cpu], when);
}
void
Gic::addressRanges(AddrRangeList &range_list)
{
range_list.clear();
range_list.push_back(RangeSize(distAddr, DIST_SIZE));
range_list.push_back(RangeSize(cpuAddr, CPU_SIZE));
}
void
Gic::serialize(std::ostream &os)
{
DPRINTF(Checkpoint, "Serializing Arm GIC\n");
SERIALIZE_SCALAR(distAddr);
SERIALIZE_SCALAR(cpuAddr);
SERIALIZE_SCALAR(distPioDelay);
SERIALIZE_SCALAR(cpuPioDelay);
SERIALIZE_SCALAR(enabled);
SERIALIZE_SCALAR(itLines);
SERIALIZE_SCALAR(itLinesLog2);
SERIALIZE_ARRAY(intEnabled, INT_BITS_MAX);
SERIALIZE_ARRAY(pendingInt, INT_BITS_MAX);
SERIALIZE_ARRAY(activeInt, INT_BITS_MAX);
SERIALIZE_ARRAY(iccrpr, CPU_MAX);
SERIALIZE_ARRAY(intPriority, INT_LINES_MAX);
SERIALIZE_ARRAY(cpuTarget, INT_LINES_MAX);
SERIALIZE_ARRAY(intConfig, INT_BITS_MAX * 2);
SERIALIZE_ARRAY(cpuEnabled, CPU_MAX);
SERIALIZE_ARRAY(cpuPriority, CPU_MAX);
SERIALIZE_ARRAY(cpuBpr, CPU_MAX);
SERIALIZE_ARRAY(cpuHighestInt, CPU_MAX);
SERIALIZE_ARRAY(cpuSgiActive, SGI_MAX);
SERIALIZE_ARRAY(cpuSgiPending, SGI_MAX);
SERIALIZE_ARRAY(cpuPpiActive, CPU_MAX);
SERIALIZE_ARRAY(cpuPpiPending, CPU_MAX);
SERIALIZE_ARRAY(*bankedIntPriority, CPU_MAX * (SGI_MAX + PPI_MAX));
SERIALIZE_SCALAR(irqEnable);
Tick interrupt_time[CPU_MAX];
for (uint32_t cpu = 0; cpu < CPU_MAX; cpu++) {
interrupt_time[cpu] = 0;
if (postIntEvent[cpu]->scheduled()) {
interrupt_time[cpu] = postIntEvent[cpu]->when();
}
}
SERIALIZE_ARRAY(interrupt_time, CPU_MAX);
}
void
Gic::unserialize(Checkpoint *cp, const std::string &section)
{
DPRINTF(Checkpoint, "Unserializing Arm GIC\n");
UNSERIALIZE_SCALAR(distAddr);
UNSERIALIZE_SCALAR(cpuAddr);
UNSERIALIZE_SCALAR(distPioDelay);
UNSERIALIZE_SCALAR(cpuPioDelay);
UNSERIALIZE_SCALAR(enabled);
UNSERIALIZE_SCALAR(itLines);
UNSERIALIZE_SCALAR(itLinesLog2);
UNSERIALIZE_ARRAY(intEnabled, INT_BITS_MAX);
UNSERIALIZE_ARRAY(pendingInt, INT_BITS_MAX);
UNSERIALIZE_ARRAY(activeInt, INT_BITS_MAX);
UNSERIALIZE_ARRAY(iccrpr, CPU_MAX);
UNSERIALIZE_ARRAY(intPriority, INT_LINES_MAX);
UNSERIALIZE_ARRAY(cpuTarget, INT_LINES_MAX);
UNSERIALIZE_ARRAY(intConfig, INT_BITS_MAX * 2);
UNSERIALIZE_ARRAY(cpuEnabled, CPU_MAX);
UNSERIALIZE_ARRAY(cpuPriority, CPU_MAX);
UNSERIALIZE_ARRAY(cpuBpr, CPU_MAX);
UNSERIALIZE_ARRAY(cpuHighestInt, CPU_MAX);
UNSERIALIZE_ARRAY(cpuSgiActive, SGI_MAX);
UNSERIALIZE_ARRAY(cpuSgiPending, SGI_MAX);
UNSERIALIZE_ARRAY(cpuPpiActive, CPU_MAX);
UNSERIALIZE_ARRAY(cpuPpiPending, CPU_MAX);
UNSERIALIZE_ARRAY(*bankedIntPriority, CPU_MAX * (SGI_MAX + PPI_MAX));
UNSERIALIZE_SCALAR(irqEnable);
Tick interrupt_time[CPU_MAX];
UNSERIALIZE_ARRAY(interrupt_time, CPU_MAX);
for (uint32_t cpu = 0; cpu < CPU_MAX; cpu++) {
if (interrupt_time[cpu])
schedule(postIntEvent[cpu], interrupt_time[cpu]);
}
}
Gic *
GicParams::create()
{
return new Gic(this);
}
/* Functions for debugging and testing */
void
Gic::driveSPI(unsigned int spiVect)
{
DPRINTF(GIC, "Received SPI Vector:%x Enable: %d\n", spiVect, irqEnable);
pendingInt[1] |= spiVect;
if (irqEnable && enabled) {
updateIntState(-1);
}
}
void
Gic::driveIrqEn( bool state)
{
irqEnable = state;
DPRINTF(GIC, " Enabling Irq\n");
updateIntState(-1);
}
void
Gic::driveLegIRQ(bool state)
{
if (irqEnable && !(!enabled && cpuEnabled[0])) {
if (state) {
DPRINTF(GIC, "Driving Legacy Irq\n");
platform->intrctrl->post(0, ArmISA::INT_IRQ, 0);
}
else platform->intrctrl->clear(0, ArmISA::INT_IRQ, 0);
}
}
void
Gic::driveLegFIQ(bool state)
{
if (state)
platform->intrctrl->post(0, ArmISA::INT_FIQ, 0);
else platform->intrctrl->clear(0, ArmISA::INT_FIQ, 0);
}