gem5/splash2/codes/apps/water-spatial/mdmain.C
Sanchayan Maity 2fcc51c2c1 Commit splash2 benchmark
While at it also add the libpthread static library amd m5op_x86
for matrix multiplication test code as well.

Note that the splash2 benchmark code does not comply with gem5
coding guidelines. Academic guys never seem to follow 80 columns
and no whitespace guideline :(.
2017-04-26 20:50:15 +05:30

193 lines
6 KiB
C

/*************************************************************************/
/* */
/* Copyright (c) 1994 Stanford University */
/* */
/* All rights reserved. */
/* */
/* Permission is given to use, copy, and modify this software for any */
/* non-commercial purpose as long as this copyright notice is not */
/* removed. All other uses, including redistribution in whole or in */
/* part, are forbidden without prior written permission. */
/* */
/* This software is provided with absolutely no warranty and no */
/* support. */
/* */
/*************************************************************************/
EXTERN_ENV
#include <cstdio>
#include "cnst.h"
#include "fileio.h"
#include "global.h"
#include "mddata.h"
#include "mdvar.h"
#include "parameters.h"
#include "split.h"
#include "water.h"
#include "wwpot.h"
/************************************************************************/
double MDMAIN(long NSTEP, long NPRINT, long NSAVE, long NORD1, long ProcID)
{
double TVIR = 0.0;
double TTMV = 0.0;
double TKIN = 0.0;
double XTT;
long i,j,k;
double POTA,POTR,POTRF;
double XVIR,AVGT,TEN;
struct list_of_boxes *new_box, *curr_box;
for (i=start_end[ProcID]->box[XDIR][FIRST]; i<=start_end[ProcID]->box[XDIR][LAST]; i++) {
for (j=start_end[ProcID]->box[YDIR][FIRST]; j<=start_end[ProcID]->box[YDIR][LAST]; j++) {
for (k=start_end[ProcID]->box[ZDIR][FIRST]; k<=start_end[ProcID]->box[ZDIR][LAST]; k++) {
new_box = (box_list *) G_MALLOC(sizeof(box_list));
new_box->coord[XDIR] = i;
new_box->coord[YDIR] = j;
new_box->coord[ZDIR] = k;
new_box->next_box = NULL;
curr_box = my_boxes[ProcID];
if (curr_box == NULL)
my_boxes[ProcID] = new_box;
else {
while (curr_box->next_box != NULL)
curr_box = curr_box->next_box;
curr_box->next_box = new_box;
} /* else */
}
}
}
/* calculate initial value for acceleration */
INTRAF(&gl->VIR,ProcID);
BARRIER(gl->start,NumProcs);
INTERF(ACC,&gl->VIR,ProcID);
BARRIER(gl->start, NumProcs);
/* MOLECULAR DYNAMICS LOOP */
for (i=1;i <= NSTEP; i++) {
TTMV=TTMV+1.00;
/* POSSIBLE ENHANCEMENT: Here's where one start measurements to avoid
cold-start effects. Recommended to do this at the beginning of the
second timestep; i.e. if (i == 2).
*/
/* initialize various shared sums */
if (ProcID == 0) {
long dir;
if (i >= 2) {
CLOCK(gl->trackstart);
}
gl->VIR = 0.0;
gl->POTA = 0.0;
gl->POTR = 0.0;
gl->POTRF = 0.0;
for (dir = XDIR; dir <= ZDIR; dir++)
gl->SUM[dir] = 0.0;
}
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->intrastart);
}
BARRIER(gl->start, NumProcs);
PREDIC(TLC,NORD1,ProcID);
INTRAF(&gl->VIR,ProcID);
BARRIER(gl->start, NumProcs);
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->intraend);
gl->intratime += gl->intraend - gl->intrastart;
}
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->interstart);
}
INTERF(FORCES,&gl->VIR,ProcID);
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->interend);
gl->intertime += gl->interend - gl->interstart;
}
CORREC(PCC,NORD1,ProcID);
BNDRY(ProcID);
KINETI(gl->SUM,HMAS,OMAS,ProcID);
BARRIER(gl->start, NumProcs);
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->intraend);
gl->intratime += gl->intraend - gl->interend;
}
TKIN=TKIN+gl->SUM[0]+gl->SUM[1]+gl->SUM[2];
TVIR=TVIR-gl->VIR;
/* CHECK if PRINTING AND/OR SAVING IS TO BE DONE */
if ( ((i % NPRINT) == 0) || ((NSAVE > 0) && ((i % NSAVE) == 0))) {
/* if so, call poteng to compute potential energy. Note
that we are attributing all the time in poteng to intermolecular
computation although some of it is intramolecular (see poteng.C) */
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->interstart);
}
POTENG(&gl->POTA,&gl->POTR,&gl->POTRF,ProcID);
BARRIER(gl->start, NumProcs);
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->interend);
gl->intertime += gl->interend - gl->interstart;
}
POTA=gl->POTA*FPOT;
POTR=gl->POTR*FPOT;
POTRF=gl->POTRF*FPOT;
XVIR=TVIR*FPOT*0.50/TTMV;
AVGT=TKIN*FKIN*TEMP*2.00/(3.00*TTMV);
TEN=(gl->SUM[0]+gl->SUM[1]+gl->SUM[2])*FKIN;
XTT=POTA+POTR+POTRF+TEN;
/* if it is time to print output as well ... */
if ((i % NPRINT) == 0 && ProcID == 0) {
LOCK(gl->IOLock);
fprintf(six," %5ld %14.5lf %12.5lf %12.5lf %12.5lf \n"
,i,TEN,POTA,POTR,POTRF);
fprintf(six," %16.3lf %16.5lf %16.5lf\n",XTT,AVGT,XVIR);
fflush(six);
UNLOCK(gl->IOLock);
}
}
BARRIER(gl->start, NumProcs);
if ((ProcID == 0) && (i >= 2)) {
CLOCK(gl->trackend);
gl->tracktime += gl->trackend - gl->trackstart;
}
} /* for i */
return(XTT);
} /* mdmain.c */