gem5/base/statistics.hh
Lisa Hsu 8a49c33064 statistics.hh:
forgot to doxygen comment binned()

base/statistics.hh:
    forgot to doxygen comment binned()

--HG--
extra : convert_revision : 7e414a3291e49b7b92bcbfec18470c3ec8671a35
2003-10-22 02:02:00 -04:00

2825 lines
77 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Declaration of Statistics objects.
*/
/**
* @todo
*
* Generalized N-dimensinal vector
* documentation
* key stats
* interval stats
* -- these both can use the same function that prints out a
* specific set of stats
* VectorStandardDeviation totals
* Document Namespaces
*/
#ifndef __STATISTICS_HH__
#define __STATISTICS_HH__
#include <algorithm>
#include <functional>
#include <iosfwd>
#include <sstream>
#include <string>
#include <vector>
#include <assert.h>
#include "base/refcnt.hh"
#include "base/str.hh"
#include "sim/host.hh"
//
// Un-comment this to enable weirdo-stat debugging
//
// #define STAT_DEBUG
#ifndef NAN
float __nan();
/** Define Not a number. */
#define NAN (__nan())
/** Need to define __nan() */
#define __M5_NAN
#endif
/** Print stats out in SS format. */
#define STAT_DISPLAY_COMPAT
class Callback;
/** The current simulated cycle. */
extern Tick curTick;
/* A namespace for all of the Statistics */
namespace Statistics {
/** All results are doubles. */
typedef double result_t;
/** A vector to hold results. */
typedef std::vector<result_t> rvec_t;
/**
* Define the storage for format flags.
* @todo Can probably shrink this.
*/
typedef u_int32_t FormatFlags;
/** Nothing extra to print. */
const FormatFlags none = 0x0000;
/** Print the total. */
const FormatFlags total = 0x0001;
/** Print the percent of the total that this entry represents. */
const FormatFlags pdf = 0x0002;
/** Don't print if this is zero. */
const FormatFlags nozero = 0x0004;
/** Don't print if this is NAN */
const FormatFlags nonan = 0x0008;
/** Print the cumulative percentage of total upto this entry. */
const FormatFlags cdf = 0x0010;
/** Print the distribution. */
const FormatFlags dist = 0x0020;
/** Used for SS compatability. */
const FormatFlags __substat = 0x8000;
/** Mask of flags that can't be set directly */
const FormatFlags __reserved = __substat;
/* Contains the statistic implementation details */
namespace Detail {
//////////////////////////////////////////////////////////////////////
//
// Statistics Framework Base classes
//
//////////////////////////////////////////////////////////////////////
struct StatData;
struct SubData;
/**
* Common base class for all statistics, used to maintain a list and print.
* This class holds no data itself but is used to find the associated
* StatData in the stat database @sa Statistics::Database.
*/
class Stat
{
protected:
/** Mark this statistics as initialized. */
void setInit();
/**
* Finds and returns the associated StatData from the database.
* @return The formatting and output data of this statistic.
*/
StatData *mydata();
/**
* Finds and returns a const pointer to the associated StatData.
* @return The formatting and output data of this statistic.
*/
const StatData *mydata() const;
/**
* Mark this stat for output at the end of simulation.
* @return The formatting and output data of this statistic.
*/
StatData *print();
/**
* Finds and returns the SubData at the given index.
* @param index The index of the SubData to find.
* @return The name and description of the given index.
*/
const SubData *mysubdata(int index) const;
/**
* Create and return a new SubData field for the given index.
* @param index The index to create a SubData for.
* @return A pointer to the created SubData.
*/
SubData *mysubdata_create(int index);
public:
/**
* Return the name of this stat.
* @return the name of the stat.
*/
virtual std::string myname() const;
/**
* Return the name of the sub field at the given index.
* @param index the subfield index.
* @return the name of the subfield.
*/
virtual std::string mysubname(int index) const;
/**
* Return the description of this stat.
* @return the description of this stat.
*/
virtual std::string mydesc() const;
/**
* Return the description of the subfield at the given index.
* @param index The subfield index.
* @return the description of the subfield.
*/
virtual std::string mysubdesc(int index) const;
/**
* Return the format flags of this stat.
* @return the format flags.
*/
virtual FormatFlags myflags() const;
/**
* Return true if this stat's prereqs have been satisfied (they are non
* zero).
* @return true if the prerequisite stats aren't zero.
*/
virtual bool dodisplay() const;
/**
* Return the display percision.
* @return The display precision.
*/
virtual int myprecision() const;
public:
/**
* Create this stat and perhaps register it with the stat database. To be
* printed a stat must be registered with the database.
* @param reg If true, register this stat in the database.
*/
Stat(bool reg);
/**
* Destructor
*/
virtual ~Stat() {}
/**
* Print this stat to the given ostream.
* @param stream The stream to print to.
*/
virtual void display(std::ostream &stream) const = 0;
/**
* Reset this stat to the default state.
*/
virtual void reset() = 0;
/**
* Return the number of entries in this stat.
* @return The number of entries.
*/
virtual size_t size() const = 0;
/**
* Return true if the stat has value zero.
* @return True if the stat is zero.
*/
virtual bool zero() const = 0;
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const = 0;
/**
* Set the name and marks this stat to print at the end of simulation.
* @param name The new name.
* @return A reference to this stat.
*/
Stat &name(const std::string &name);
/**
* Set the description and marks this stat to print at the end of
* simulation.
* @param desc The new description.
* @return A reference to this stat.
*/
Stat &desc(const std::string &desc);
/**
* Set the precision and marks this stat to print at the end of simulation.
* @param p The new precision
* @return A reference to this stat.
*/
Stat &precision(int p);
/**
* Set the flags and marks this stat to print at the end of simulation.
* @param f The new flags.
* @return A reference to this stat.
*/
Stat &flags(FormatFlags f);
/**
* Set the prerequisite stat and marks this stat to print at the end of
* simulation.
* @param prereq The prerequisite stat.
* @return A reference to this stat.
*/
Stat &prereq(const Stat &prereq);
/**
* Set the subfield name for the given index, and marks this stat to print
* at the end of simulation.
* @param index The subfield index.
* @param name The new name of the subfield.
* @return A reference to this stat.
*/
Stat &subname(int index, const std::string &name);
/**
* Set the subfield description for the given index and marks this stat to
* print at the end of simulation.
* @param index The subfield index.
* @param desc The new description of the subfield
* @return A reference to this stat.
*/
Stat &subdesc(int index, const std::string &desc);
public:
/**
* Checks if the first stat's name is alphabetically less than the second.
* This function breaks names up at periods and considers each subname
* separately.
* @param stat1 The first stat.
* @param stat2 The second stat.
* @return stat1's name is alphabetically before stat2's
*/
static bool less(Stat *stat1, Stat *stat2);
#ifdef STAT_DEBUG
/** A unique ID used for debugging. */
int number;
#endif
};
/**
* Base class for all scalar stats. The class provides an interface to access
* the current value of the stat. This class can be used in formulas.
*/
class ScalarStat : public Stat
{
public:
/**
* Create and perhaps register this stat with the database.
* @param reg If true, register this stat with the database.
*/
ScalarStat(bool reg) : Stat(reg) {}
/**
* Return the current value of this statistic as a result type.
* @return The current value of this statistic.
*/
virtual result_t val() const = 0;
/**
* Return true if this stat has value zero.
* @return True if this stat is zero.
*/
virtual bool zero() const;
/**
* Print this stat to the provided ostream.
* @param stream The output stream.
*/
virtual void display(std::ostream &stream) const;
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const = 0;
};
void
VectorDisplay(std::ostream &stream, const std::string &myname,
const std::vector<std::string> *mysubnames,
const std::string &mydesc,
const std::vector<std::string> *mysubdescs,
int myprecision, FormatFlags myflags, const rvec_t &vec,
result_t mytotal);
/**
* Base class for all vector stats. This class provides interfaces to access
* the current values of the stats as well as the totals. This class can be
* used in formulas.
*/
class VectorStat : public Stat
{
public:
/**
* Create and perhaps register this stat with the database.
* @param reg If true, register this stat with the database.
*/
VectorStat(bool reg) : Stat(reg) {}
/**
* Return a vector of result typesd of all the values in the vector.
* @return The values of the vector.
*/
virtual const rvec_t &val() const = 0;
/**
* Return the total of all the entries in the vector.
* @return The total of the vector.
*/
virtual result_t total() const = 0;
/**
* Return true if this stat has value zero.
* @return True if this stat is zero.
*/
virtual bool zero() const;
/**
* Print this stat to the provided ostream.
* @param stream The output stream.
*/
virtual void display(std::ostream &stream) const;
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const = 0;
};
//////////////////////////////////////////////////////////////////////
//
// Simple Statistics
//
//////////////////////////////////////////////////////////////////////
/**
* Templatized storage and interface for a simple scalar stat.
*/
template <typename T>
struct StatStor
{
public:
/** The paramaters for this storage type, none for a scalar. */
struct Params { };
private:
/** The statistic value. */
T data;
public:
/**
* Builds this storage element and calls the base constructor of the
* datatype.
*/
StatStor(const Params &) : data(T()) {}
/**
* The the stat to the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void set(T val, const Params &p) { data = val; }
/**
* Increment the stat by the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void inc(T val, const Params &p) { data += val; }
/**
* Decrement the stat by the given value.
* @param val The new value.
* @param p The paramters of this storage type.
*/
void dec(T val, const Params &p) { data -= val; }
/**
* Return the value of this stat as a result type.
* @param p The parameters of this storage type.
* @return The value of this stat.
*/
result_t val(const Params &p) const { return (result_t)data; }
/**
* Return the value of this stat as its base type.
* @param p The params of this storage type.
* @return The value of this stat.
*/
T value(const Params &p) const { return data; }
/**
* Reset stat value to default
*/
void reset() { data = T(); }
};
/**
* Templatized storage and interface to a per-cycle average stat. This keeps
* a current count and updates a total (count * cycles) when this count
* changes. This allows the quick calculation of a per cycle count of the item
* being watched. This is good for keeping track of residencies in structures
* among other things.
* @todo add lateny to the stat and fix binning.
*/
template <typename T>
struct AvgStor
{
public:
/** The paramaters for this storage type, none for this average. */
struct Params { };
private:
/** The current count. */
T current;
/** The total count for all cycles. */
mutable result_t total;
/** The cycle that current last changed. */
mutable Tick last;
public:
/**
* Build and initializes this stat storage.
*/
AvgStor(const Params &) : current(T()), total(0), last(0) { }
/**
* Set the current count to the one provided, update the total and last
* set values.
* @param val The new count.
* @param p The parameters for this storage.
*/
void set(T val, const Params &p) {
total += current * (curTick - last);
last = curTick;
current = val;
}
/**
* Increment the current count by the provided value, calls set.
* @param val The amount to increment.
* @param p The parameters for this storage.
*/
void inc(T val, const Params &p) { set(current + val, p); }
/**
* Deccrement the current count by the provided value, calls set.
* @param val The amount to decrement.
* @param p The parameters for this storage.
*/
void dec(T val, const Params &p) { set(current - val, p); }
/**
* Return the current average.
* @param p The parameters for this storage.
* @return The current average.
*/
result_t val(const Params &p) const {
total += current * (curTick - last);
last = curTick;
return (result_t)(total + current) / (result_t)(curTick + 1);
}
/**
* Return the current count.
* @param p The parameters for this storage.
* @return The current count.
*/
T value(const Params &p) const { return current; }
/**
* Reset stat value to default
*/
void reset()
{
current = T();
total = 0;
last = curTick;
}
};
/**
* Implementation of a scalar stat. The type of stat is determined by the
* Storage template. The storage for this stat is held within the Bin class.
* This allows for breaking down statistics across multiple bins easily.
*/
template <typename T, template <typename T> class Storage, class Bin>
class ScalarBase : public ScalarStat
{
protected:
/** Define the type of the storage class. */
typedef Storage<T> storage_t;
/** Define the params of the storage class. */
typedef typename storage_t::Params params_t;
/** Define the bin type. */
typedef typename Bin::Bin<storage_t> bin_t;
protected:
/** The bin of this stat. */
bin_t bin;
/** The parameters for this stat. */
params_t params;
protected:
/**
* Retrieve the storage from the bin.
* @return The storage object for this stat.
*/
storage_t *data() { return bin.data(params); }
/**
* Retrieve a const pointer to the storage from the bin.
* @return A const pointer to the storage object for this stat.
*/
const storage_t *data() const {
return (const_cast<bin_t *>(&bin))->data(params);
}
protected:
/**
* Copy constructor, copies are not allowed.
*/
ScalarBase(const ScalarBase &stat);
/**
* Can't copy stats.
*/
const ScalarBase &operator=(const ScalarBase &);
public:
/**
* Return the current value of this stat as a result type.
* @return The current value.
*/
result_t val() const { return data()->val(params); }
/**
* Return the current value of this stat as its base type.
* @return The current value.
*/
T value() const { return data()->value(params); }
public:
/**
* Create and initialize this stat, register it with the database.
*/
ScalarBase() : ScalarStat(true) {
bin.init(params);
setInit();
}
public:
// Common operators for stats
/**
* Increment the stat by 1. This calls the associated storage object inc
* function.
*/
void operator++() { data()->inc(1, params); }
/**
* Decrement the stat by 1. This calls the associated storage object dec
* function.
*/
void operator--() { data()->dec(1, params); }
/** Increment the stat by 1. */
void operator++(int) { ++*this; }
/** Decrement the stat by 1. */
void operator--(int) { --*this; }
/**
* Set the data value to the given value. This calls the associated storage
* object set function.
* @param v The new value.
*/
template <typename U>
void operator=(const U& v) { data()->set(v, params); }
/**
* Increment the stat by the given value. This calls the associated
* storage object inc function.
* @param v The value to add.
*/
template <typename U>
void operator+=(const U& v) { data()->inc(v, params); }
/**
* Decrement the stat by the given value. This calls the associated
* storage object dec function.
* @param v The value to substract.
*/
template <typename U>
void operator-=(const U& v) { data()->dec(v, params); }
/**
* Return the number of elements, always 1 for a scalar.
* @return 1.
*/
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return bin_t::binned; }
/**
* Reset stat value to default
*/
void reset() { bin.reset(); }
};
//////////////////////////////////////////////////////////////////////
//
// Vector Statistics
//
//////////////////////////////////////////////////////////////////////
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy;
/**
* Implementation of a vector of stats. The type of stat is determined by the
* Storage class. @sa ScalarBase
*/
template <typename T, template <typename T> class Storage, class Bin>
class VectorBase : public VectorStat
{
protected:
/** Define the type of the storage class. */
typedef Storage<T> storage_t;
/** Define the params of the storage class. */
typedef typename storage_t::Params params_t;
/** Define the bin type. */
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
/** Local storage for the entry values, used for printing. */
mutable rvec_t *vec;
protected:
/** The bin of this stat. */
bin_t bin;
/** The parameters for this stat. */
params_t params;
protected:
/**
* Retrieve the storage from the bin for the given index.
* @param index The vector index to access.
* @return The storage object at the given index.
*/
storage_t *data(int index) { return bin.data(index, params); }
/**
* Retrieve a const pointer to the storage from the bin
* for the given index.
* @param index The vector index to access.
* @return A const pointer to the storage object at the given index.
*/
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
/** Copying stats isn't allowed. */
VectorBase(const VectorBase &stat);
/** Copying stats isn't allowed. */
const VectorBase &operator=(const VectorBase &);
public:
/**
* Copy the values to a local vector and return a reference to it.
* @return A reference to a vector of the stat values.
*/
const rvec_t &val() const {
if (vec)
vec->resize(size());
else
vec = new rvec_t(size());
for (int i = 0; i < size(); ++i)
(*vec)[i] = data(i)->val(params);
return *vec;
}
/**
* Return a total of all entries in this vector.
* @return The total of all vector entries.
*/
result_t total() const {
result_t total = 0.0;
for (int i = 0; i < size(); ++i)
total += data(i)->val(params);
return total;
}
public:
/**
* Create this vector and register it with the database.
*/
VectorBase() : VectorStat(true), vec(NULL) {}
/**
* Destructor.
*/
~VectorBase() { if (vec) delete vec; }
/**
* Set this vector to have the given size.
* @param size The new size.
* @return A reference to this stat.
*/
VectorBase &init(size_t size) {
bin.init(size, params);
setInit();
return *this;
}
/** Friend this class with the associated scalar proxy. */
friend class ScalarProxy<T, Storage, Bin>;
/**
* Return a reference (ScalarProxy) to the stat at the given index.
* @param index The vector index to access.
* @return A reference of the stat.
*/
ScalarProxy<T, Storage, Bin> operator[](int index);
/**
* Return the number of elements in this vector.
* @return The size of the vector.
*/
virtual size_t size() const { return bin.size(); }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return bin_t::binned; }
/**
* Reset stat value to default
*/
virtual void reset() { bin.reset(); }
};
/**
* A proxy class to access the stat at a given index in a VectorBase stat.
* Behaves like a ScalarBase.
*/
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy : public ScalarStat
{
protected:
/** Define the type of the storage class. */
typedef Storage<T> storage_t;
/** Define the params of the storage class. */
typedef typename storage_t::Params params_t;
/** Define the bin type. */
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
/** Pointer to the bin in the parent VectorBase. */
bin_t *bin;
/** Pointer to the params in the parent VectorBase. */
params_t *params;
/** The index to access in the parent VectorBase. */
int index;
protected:
/**
* Retrieve the storage from the bin.
* @return The storage from the bin for this stat.
*/
storage_t *data() { return bin->data(index, *params); }
/**
* Retrieve a const pointer to the storage from the bin.
* @return A const pointer to the storage for this stat.
*/
const storage_t *data() const { return bin->data(index, *params); }
public:
/**
* Return the current value of this statas a result type.
* @return The current value.
*/
result_t val() const { return data()->val(*params); }
/**
* Return the current value of this stat as its base type.
* @return The current value.
*/
T value() const { return data()->value(*params); }
public:
/**
* Create and initialize this proxy, do not register it with the database.
* @param b The bin to use.
* @param p The params to use.
* @param i The index to access.
*/
ScalarProxy(bin_t &b, params_t &p, int i)
: ScalarStat(false), bin(&b), params(&p), index(i) {}
/**
* Create a copy of the provided ScalarProxy.
* @param sp The proxy to copy.
*/
ScalarProxy(const ScalarProxy &sp)
: ScalarStat(false), bin(sp.bin), params(sp.params), index(sp.index) {}
/**
* Set this proxy equal to the provided one.
* @param sp The proxy to copy.
* @return A reference to this proxy.
*/
const ScalarProxy &operator=(const ScalarProxy &sp) {
bin = sp.bin;
params = sp.params;
index = sp.index;
return *this;
}
public:
// Common operators for stats
/**
* Increment the stat by 1. This calls the associated storage object inc
* function.
*/
void operator++() { data()->inc(1, *params); }
/**
* Decrement the stat by 1. This calls the associated storage object dec
* function.
*/
void operator--() { data()->dec(1, *params); }
/** Increment the stat by 1. */
void operator++(int) { ++*this; }
/** Decrement the stat by 1. */
void operator--(int) { --*this; }
/**
* Set the data value to the given value. This calls the associated storage
* object set function.
* @param v The new value.
*/
template <typename U>
void operator=(const U& v) { data()->set(v, *params); }
/**
* Increment the stat by the given value. This calls the associated
* storage object inc function.
* @param v The value to add.
*/
template <typename U>
void operator+=(const U& v) { data()->inc(v, *params); }
/**
* Decrement the stat by the given value. This calls the associated
* storage object dec function.
* @param v The value to substract.
*/
template <typename U>
void operator-=(const U& v) { data()->dec(v, *params); }
/**
* Return the number of elements, always 1 for a scalar.
* @return 1.
*/
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return false since Proxies aren't printed/binned
*/
virtual bool binned() const { return false; }
/**
* This stat has no state. Nothing to reset
*/
virtual void reset() { }
};
template <typename T, template <typename T> class Storage, class Bin>
inline ScalarProxy<T, Storage, Bin>
VectorBase<T, Storage, Bin>::operator[](int index)
{
assert (index >= 0 && index < size());
return ScalarProxy<T, Storage, Bin>(bin, params, index);
}
template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy;
template <typename T, template <typename T> class Storage, class Bin>
class Vector2dBase : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
protected:
size_t x;
size_t y;
bin_t bin;
params_t params;
std::vector<std::string> *y_subnames;
protected:
storage_t *data(int index) { return bin.data(index, params); }
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
Vector2dBase(const Vector2dBase &stat);
const Vector2dBase &operator=(const Vector2dBase &);
public:
Vector2dBase() : Stat(true) {}
~Vector2dBase() { }
Vector2dBase &init(size_t _x, size_t _y) {
x = _x;
y = _y;
bin.init(x * y, params);
setInit();
y_subnames = new std::vector<std::string>(y);
return *this;
}
/**
* @warning This makes the assumption that if you're gonna subnames a 2d
* vector, you're subnaming across all y
*/
Vector2dBase &ysubnames(const char **names)
{
for (int i=0; i < y; ++i) {
(*y_subnames)[i] = names[i];
}
return *this;
}
Vector2dBase &ysubname(int index, const std::string subname)
{
(*y_subnames)[i] = subname.c_str();
return *this;
}
std::string ysubname(int i) const { return (*y_subnames)[i]; }
friend class VectorProxy<T, Storage, Bin>;
VectorProxy<T, Storage, Bin> operator[](int index);
virtual size_t size() const { return bin.size(); }
virtual bool zero() const { return data(0)->value(params) == 0.0; }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return bin_t::binned; }
virtual void
display(std::ostream &out) const
{
bool have_subname = false;
for (int i = 0; i < x; ++i) {
if (!mysubname(i).empty())
have_subname = true;
}
rvec_t tot_vec(y);
result_t super_total = 0.0;
for (int i = 0; i < x; ++i) {
std::string subname;
if (have_subname) {
subname = mysubname(i);
if (subname.empty())
continue;
} else
subname = to_string(i);
int iy = i * y;
rvec_t vec(y);
result_t total = 0.0;
for (int j = 0; j < y; ++j) {
vec[j] = data(iy + j)->val(params);
tot_vec[j] += vec[j];
total += vec[j];
super_total += vec[j];
}
std::string desc;
if (mysubdesc(i).empty()) {
desc = mydesc();
} else {
desc = mysubdesc(i);
}
VectorDisplay(out, myname() + "_" + subname, y_subnames, desc, 0,
myprecision(), myflags(), vec, total);
}
if ((myflags() & ::Statistics::total) && (x > 1)) {
VectorDisplay(out, myname(), y_subnames, mydesc(), 0,
myprecision(), myflags(), tot_vec, super_total);
}
}
/**
* Reset stat value to default
*/
virtual void reset() { bin.reset(); }
};
template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy : public VectorStat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
private:
bin_t *bin;
params_t *params;
int offset;
int len;
private:
mutable rvec_t *vec;
storage_t *data(int index) {
assert(index < len);
return bin->data(offset + index, *params);
}
const storage_t *data(int index) const {
return (const_cast<bin_t *>(bin))->data(offset + index, *params);
}
public:
const rvec_t &val() const {
if (vec)
vec->resize(size());
else
vec = new rvec_t(size());
for (int i = 0; i < size(); ++i)
(*vec)[i] = data(i)->val(*params);
return *vec;
}
result_t total() const {
result_t total = 0.0;
for (int i = 0; i < size(); ++i)
total += data(i)->val(*params);
return total;
}
public:
VectorProxy(bin_t &b, params_t &p, int o, int l)
: VectorStat(false), bin(&b), params(&p), offset(o), len(l), vec(NULL)
{ }
VectorProxy(const VectorProxy &sp)
: VectorStat(false), bin(sp.bin), params(sp.params), offset(sp.offset),
len(sp.len), vec(NULL)
{ }
~VectorProxy() {
if (vec)
delete vec;
}
const VectorProxy &operator=(const VectorProxy &sp) {
bin = sp.bin;
params = sp.params;
offset = sp.offset;
len = sp.len;
if (vec)
delete vec;
vec = NULL;
return *this;
}
virtual size_t size() const { return len; }
ScalarProxy<T, Storage, Bin> operator[](int index) {
assert (index >= 0 && index < size());
return ScalarProxy<T, Storage, Bin>(*bin, *params, offset + index);
}
/**
* Return true if stat is binned.
*@return false since Proxies aren't printed/binned
*/
virtual bool binned() const { return false; }
/**
* This stat has no state. Nothing to reset.
*/
virtual void reset() { }
};
template <typename T, template <typename T> class Storage, class Bin>
inline VectorProxy<T, Storage, Bin>
Vector2dBase<T, Storage, Bin>::operator[](int index)
{
int offset = index * y;
assert (index >= 0 && offset < size());
return VectorProxy<T, Storage, Bin>(bin, params, offset, y);
}
//////////////////////////////////////////////////////////////////////
//
// Non formula statistics
//
//////////////////////////////////////////////////////////////////////
void DistDisplay(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
result_t min_val, result_t max_val,
result_t underflow, result_t overflow,
const rvec_t &vec, int min, int max, int bucket_size,
int size);
/**
* Templatized storage and interface for a distrbution stat.
*/
template <typename T>
struct DistStor
{
public:
/** The parameters for a distribution stat. */
struct Params
{
/** The minimum value to track. */
int min;
/** The maximum value to track. */
int max;
/** The number of entries in each bucket. */
int bucket_size;
/** The number of buckets. Equal to (max-min)/bucket_size. */
int size;
};
private:
/** The smallest value sampled. */
T min_val;
/** The largest value sampled. */
T max_val;
/** The number of values sampled less than min. */
T underflow;
/** The number of values sampled more than max. */
T overflow;
/** Counter for each bucket. */
std::vector<T> vec;
public:
/**
* Construct this storage with the supplied params.
* @param params The parameters.
*/
DistStor(const Params &params)
: min_val(INT_MAX), max_val(INT_MIN), underflow(0), overflow(0),
vec(params.size)
{
reset();
}
/**
* Add a value to the distribution for the given number of times.
* @param val The value to add.
* @param number The number of times to add the value.
* @param params The paramters of the distribution.
*/
void sample(T val, int number, const Params &params) {
if (val < params.min)
underflow += number;
else if (val > params.max)
overflow += number;
else {
int index = (val - params.min) / params.bucket_size;
assert(index < size(params));
vec[index] += number;
}
if (val < min_val)
min_val = val;
if (val > max_val)
max_val = val;
}
/**
* Return the number of buckets in this distribution.
* @return the number of buckets.
* @todo Is it faster to return the size from the parameters?
*/
size_t size(const Params &) const { return vec.size(); }
/**
* Returns true if any calls to sample have been made.
* @param params The paramters of the distribution.
* @return True if any values have been sampled.
*/
bool zero(const Params &params) const {
if (underflow != 0 || overflow != 0)
return false;
int s = size(params);
for (int i = 0; i < s; i++)
if (vec[i] != 0)
return false;
return true;
}
/**
* Print this distribution and the given print data to the given ostream.
* @param stream The output stream.
* @param name The name of this stat (from StatData).
* @param desc The description of this stat (from StatData).
* @param precision The print precision (from StatData).
* @param flags The format flags (from StatData).
* @param params The paramters of this distribution.
*/
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &params) const {
#ifdef STAT_DISPLAY_COMPAT
result_t min = params.min;
#else
result_t min = (min_val == INT_MAX) ? params.min : min_val;
#endif
result_t max = (max_val == INT_MIN) ? 0 : max_val;
rvec_t rvec(params.size);
for (int i = 0; i < params.size; ++i)
rvec[i] = vec[i];
DistDisplay(stream, name, desc, precision, flags,
(result_t)min, (result_t)max,
(result_t)underflow, (result_t)overflow,
rvec, params.min, params.max, params.bucket_size,
params.size);
}
/**
* Reset stat value to default
*/
void reset()
{
min_val = INT_MAX;
max_val = INT_MIN;
underflow = 0;
overflow = 0;
int size = vec.size();
for (int i = 0; i < size; ++i)
vec[i] = T();
}
};
void FancyDisplay(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
result_t mean, result_t variance);
/**
* Templatized storage and interface for a distribution that calculates mean
* and variance.
*/
template <typename T>
struct FancyStor
{
public:
/**
* No paramters for this storage.
*/
struct Params {};
private:
/** The current sum. */
T sum;
/** The sum of squares. */
T squares;
/** The total number of samples. */
int total;
public:
/**
* Create and initialize this storage.
*/
FancyStor(const Params &) : sum(T()), squares(T()), total(0) {}
/**
* Add a value the given number of times to this running average.
* Update the running sum and sum of squares, increment the number of
* values seen by the given number.
* @param val The value to add.
* @param number The number of times to add the value.
* @param p The parameters of this stat.
*/
void sample(T val, int number, const Params &p) {
T value = val * number;
sum += value;
squares += value * value;
total += number;
}
/**
* Print this distribution and the given print data to the given ostream.
* @param stream The output stream.
* @param name The name of this stat (from StatData).
* @param desc The description of this stat (from StatData).
* @param precision The print precision (from StatData).
* @param flags The format flags (from StatData).
* @param params The paramters of this distribution.
*/
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &params) const {
result_t mean = NAN;
result_t variance = NAN;
if (total != 0) {
result_t fsum = sum;
result_t fsq = squares;
result_t ftot = total;
mean = fsum / ftot;
variance = (ftot * fsq - (fsum * fsum)) / (ftot * (ftot - 1.0));
}
FancyDisplay(stream, name, desc, precision, flags, mean, variance);
}
/**
* Return the number of entries in this stat, 1
* @return 1.
*/
size_t size(const Params &) const { return 1; }
/**
* Return true if no samples have been added.
* @return True if no samples have been added.
*/
bool zero(const Params &) const { return total == 0; }
/**
* Reset stat value to default
*/
virtual void reset()
{
sum = T();
squares = T();
total = 0;
}
};
/**
* Templatized storage for distribution that calculates per cycle mean and
* variance.
*/
template <typename T>
struct AvgFancy
{
public:
/** No parameters for this storage. */
struct Params {};
private:
/** Current total. */
T sum;
/** Current sum of squares. */
T squares;
public:
/**
* Create and initialize this storage.
*/
AvgFancy(const Params &) : sum(T()), squares(T()) {}
/**
* Add a value to the distribution for the given number of times.
* Update the running sum and sum of squares.
* @param val The value to add.
* @param number The number of times to add the value.
* @param p The paramters of the distribution.
*/
void sample(T val, int number, const Params& p) {
T value = val * number;
sum += value;
squares += value * value;
}
/**
* Print this distribution and the given print data to the given ostream.
* @param stream The output stream.
* @param name The name of this stat (from StatData).
* @param desc The description of this stat (from StatData).
* @param precision The print precision (from StatData).
* @param flags The format flags (from StatData).
* @param params The paramters of this distribution.
*/
void display(std::ostream &stream, const std::string &name,
const std::string &desc, int precision, FormatFlags flags,
const Params &params) const {
result_t mean = sum / curTick;
result_t variance = (squares - sum * sum) / curTick;
FancyDisplay(stream, name, desc, precision, flags, mean, variance);
}
/**
* Return the number of entries, in this case 1.
* @return 1.
*/
size_t size(const Params &params) const { return 1; }
/**
* Return true if no samples have been added.
* @return True if the sum is zero.
*/
bool zero(const Params &params) const { return sum == 0; }
/**
* Reset stat value to default
*/
virtual void reset()
{
sum = T();
squares = T();
}
};
/**
* Implementation of a distribution stat. The type of distribution is
* determined by the Storage template. @sa ScalarBase
*/
template <typename T, template <typename T> class Storage, class Bin>
class DistBase : public Stat
{
protected:
/** Define the type of the storage class. */
typedef Storage<T> storage_t;
/** Define the params of the storage class. */
typedef typename storage_t::Params params_t;
/** Define the bin type. */
typedef typename Bin::Bin<storage_t> bin_t;
protected:
/** The bin of this stat. */
bin_t bin;
/** The parameters for this stat. */
params_t params;
protected:
/**
* Retrieve the storage from the bin.
* @return The storage object for this stat.
*/
storage_t *data() { return bin.data(params); }
/**
* Retrieve a const pointer to the storage from the bin.
* @return A const pointer to the storage object for this stat.
*/
const storage_t *data() const {
return (const_cast<bin_t *>(&bin))->data(params);
}
protected:
// Copying stats is not allowed
/** Copies are not allowed. */
DistBase(const DistBase &stat);
/** Copies are not allowed. */
const DistBase &operator=(const DistBase &);
public:
/**
* Create this distrubition and register it with the database.
*/
DistBase() : Stat(true) { }
/**
* Destructor.
*/
~DistBase() { }
/**
* Add a value to the distribtion n times. Calls sample on the storage
* class.
* @param v The value to add.
* @param n The number of times to add it, defaults to 1.
*/
template <typename U>
void sample(const U& v, int n = 1) { data()->sample(v, n, params); }
/**
* Return the number of entries in this stat.
* @return The number of entries.
*/
virtual size_t size() const { return data()->size(params); }
/**
* Return true if no samples have been added.
* @return True if there haven't been any samples.
*/
virtual bool zero() const { return data()->zero(params); }
/**
* Print this distribution to the given ostream.
* @param stream The output stream.
*/
virtual void display(std::ostream &stream) const {
data()->display(stream, myname(), mydesc(), myprecision(), myflags(),
params);
}
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return bin_t::binned; }
/**
* Reset stat value to default
*/
virtual void reset()
{
bin.reset();
}
};
template <typename T, template <typename T> class Storage, class Bin>
class DistProxy;
template <typename T, template <typename T> class Storage, class Bin>
class VectorDistBase : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::VectorBin<storage_t> bin_t;
protected:
bin_t bin;
params_t params;
protected:
storage_t *data(int index) { return bin.data(index, params); }
const storage_t *data(int index) const {
return (const_cast<bin_t *>(&bin))->data(index, params);
}
protected:
// Copying stats is not allowed
VectorDistBase(const VectorDistBase &stat);
const VectorDistBase &operator=(const VectorDistBase &);
public:
VectorDistBase() : Stat(true) { }
~VectorDistBase() { }
friend class DistProxy<T, Storage, Bin>;
DistProxy<T, Storage, Bin> operator[](int index);
const DistProxy<T, Storage, Bin> operator[](int index) const;
virtual size_t size() const { return bin.size(); }
virtual bool zero() const { return false; }
virtual void display(std::ostream &stream) const;
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return bin_t::binned; }
/**
* Reset stat value to default
*/
virtual void reset()
{
bin.reset();
}
};
template <typename T, template <typename T> class Storage, class Bin>
class DistProxy : public Stat
{
protected:
typedef Storage<T> storage_t;
typedef typename storage_t::Params params_t;
typedef typename Bin::Bin<storage_t> bin_t;
typedef VectorDistBase<T, Storage, Bin> base_t;
private:
union {
base_t *stat;
const base_t *cstat;
};
int index;
protected:
storage_t *data() { return stat->data(index); }
const storage_t *data() const { return cstat->data(index); }
public:
DistProxy(const VectorDistBase<T, Storage, Bin> &s, int i)
: Stat(false), cstat(&s), index(i) {}
DistProxy(const DistProxy &sp)
: Stat(false), cstat(sp.cstat), index(sp.index) {}
const DistProxy &operator=(const DistProxy &sp) {
cstat = sp.cstat; index = sp.index; return *this;
}
public:
template <typename U>
void sample(const U& v, int n = 1) { data()->sample(v, n, cstat->params); }
virtual size_t size() const { return 1; }
virtual bool zero() const {
return data()->zero(cstat->params);
}
virtual void display(std::ostream &stream) const {
std::stringstream name, desc;
if (!(cstat->mysubname(index).empty())) {
name << cstat->myname() << cstat->mysubname(index);
} else {
name << cstat->myname() << "_" << index;
}
if (!(cstat->mysubdesc(index).empty())) {
desc << cstat->mysubdesc(index);
} else {
desc << cstat->mydesc();
}
data()->display(stream, name.str(), desc.str(),
cstat->myprecision(), cstat->myflags(), cstat->params);
}
/**
* Return true if stat is binned.
*@return false since Proxies are not binned/printed.
*/
virtual bool binned() const { return false; }
/**
* Proxy has no state. Nothing to reset.
*/
virtual void reset() { }
};
template <typename T, template <typename T> class Storage, class Bin>
inline DistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index)
{
assert (index >= 0 && index < size());
return DistProxy<T, Storage, Bin>(*this, index);
}
template <typename T, template <typename T> class Storage, class Bin>
inline const DistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index) const
{
assert (index >= 0 && index < size());
return DistProxy<T, Storage, Bin>(*this, index);
}
/**
* @todo Need a way to print Distribution totals across the Vector
*/
template <typename T, template <typename T> class Storage, class Bin>
void
VectorDistBase<T, Storage, Bin>::display(std::ostream &stream) const
{
for (int i = 0; i < size(); ++i) {
DistProxy<T, Storage, Bin> proxy(*this, i);
proxy.display(stream);
}
}
#if 0
result_t
VectorDistBase<T, Storage, Bin>::total(int index) const
{
int total = 0;
for (int i=0; i < x_size(); ++i) {
total += data(i)->val(*params);
}
}
#endif
//////////////////////////////////////////////////////////////////////
//
// Formula Details
//
//////////////////////////////////////////////////////////////////////
/**
* Base class for formula statistic node. These nodes are used to build a tree
* that represents the formula.
*/
class Node : public RefCounted
{
public:
/**
* Return the number of nodes in the subtree starting at this node.
* @return the number of nodes in this subtree.
*/
virtual size_t size() const = 0;
/**
* Return the result vector of this subtree.
* @return The result vector of this subtree.
*/
virtual const rvec_t &val() const = 0;
/**
* Return the total of the result vector.
* @return The total of the result vector.
*/
virtual result_t total() const = 0;
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const = 0;
};
/** Reference counting pointer to a function Node. */
typedef RefCountingPtr<Node> NodePtr;
class ScalarStatNode : public Node
{
private:
const ScalarStat &stat;
mutable rvec_t result;
public:
ScalarStatNode(const ScalarStat &s) : stat(s), result(1) {}
const rvec_t &val() const { result[0] = stat.val(); return result; }
virtual result_t total() const { return stat.val(); };
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return stat.binned(); }
};
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxyNode : public Node
{
private:
const ScalarProxy<T, Storage, Bin> proxy;
mutable rvec_t result;
public:
ScalarProxyNode(const ScalarProxy<T, Storage, Bin> &p)
: proxy(p), result(1) { }
const rvec_t &val() const { result[0] = proxy.val(); return result; }
virtual result_t total() const { return proxy.val(); };
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return proxy.binned(); }
};
class VectorStatNode : public Node
{
private:
const VectorStat &stat;
public:
VectorStatNode(const VectorStat &s) : stat(s) {}
const rvec_t &val() const { return stat.val(); }
virtual result_t total() const { return stat.total(); };
virtual size_t size() const { return stat.size(); }
/**
* Return true if stat is binned.
*@return True is stat is binned.
*/
virtual bool binned() const { return stat.binned(); }
};
template <typename T>
class ConstNode : public Node
{
private:
rvec_t data;
public:
ConstNode(T s) : data(1, (result_t)s) {}
const rvec_t &val() const { return data; }
virtual result_t total() const { return data[0]; };
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return False since constants aren't binned.
*/
virtual bool binned() const { return false; }
};
template <typename T>
class FunctorNode : public Node
{
private:
T &functor;
mutable rvec_t result;
public:
FunctorNode(T &f) : functor(f) { result.resize(1); }
const rvec_t &val() const {
result[0] = (result_t)functor();
return result;
}
virtual result_t total() const { return (result_t)functor(); };
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return False since Functors aren't binned
*/
virtual bool binned() const { return false; }
};
template <typename T>
class ScalarNode : public Node
{
private:
T &scalar;
mutable rvec_t result;
public:
ScalarNode(T &s) : scalar(s) { result.resize(1); }
const rvec_t &val() const {
result[0] = (result_t)scalar;
return result;
}
virtual result_t total() const { return (result_t)scalar; };
virtual size_t size() const { return 1; }
/**
* Return true if stat is binned.
*@return False since Scalar's aren't binned
*/
virtual bool binned() const { return false; }
};
template <class Op>
class UnaryNode : public Node
{
public:
NodePtr l;
mutable rvec_t result;
public:
UnaryNode(NodePtr p) : l(p) {}
const rvec_t &val() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result.resize(size);
Op op;
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i]);
return result;
}
result_t total() const {
Op op;
return op(l->total());
}
virtual size_t size() const { return l->size(); }
/**
* Return true if child of node is binned.
*@return True if child of node is binned.
*/
virtual bool binned() const { return l->binned(); }
};
template <class Op>
class BinaryNode : public Node
{
public:
NodePtr l;
NodePtr r;
mutable rvec_t result;
public:
BinaryNode(NodePtr a, NodePtr b) : l(a), r(b) {}
const rvec_t &val() const {
Op op;
const rvec_t &lvec = l->val();
const rvec_t &rvec = r->val();
assert(lvec.size() > 0 && rvec.size() > 0);
if (lvec.size() == 1 && rvec.size() == 1) {
result.resize(1);
result[0] = op(lvec[0], rvec[0]);
} else if (lvec.size() == 1) {
int size = rvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[0], rvec[i]);
} else if (rvec.size() == 1) {
int size = lvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i], rvec[0]);
} else if (rvec.size() == lvec.size()) {
int size = rvec.size();
result.resize(size);
for (int i = 0; i < size; ++i)
result[i] = op(lvec[i], rvec[i]);
}
return result;
}
result_t total() const {
Op op;
return op(l->total(), r->total());
}
virtual size_t size() const {
int ls = l->size();
int rs = r->size();
if (ls == 1)
return rs;
else if (rs == 1)
return ls;
else {
assert(ls == rs && "Node vector sizes are not equal");
return ls;
}
}
/**
* Return true if any children of node are binned
*@return True if either child of node is binned.
*/
virtual bool binned() const { return (l->binned() || r->binned()); }
};
template <class Op>
class SumNode : public Node
{
public:
NodePtr l;
mutable rvec_t result;
public:
SumNode(NodePtr p) : l(p), result(1) {}
const rvec_t &val() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result[0] = 0.0;
Op op;
for (int i = 0; i < size; ++i)
result[0] = op(result[0], lvec[i]);
return result;
}
result_t total() const {
const rvec_t &lvec = l->val();
int size = lvec.size();
assert(size > 0);
result_t result = 0.0;
Op op;
for (int i = 0; i < size; ++i)
result = op(result, lvec[i]);
return result;
}
virtual size_t size() const { return 1; }
/**
* Return true if child of node is binned.
*@return True if child of node is binned.
*/
virtual bool binned() const { return l->binned(); }
};
/**
* Helper class to construct formula node trees.
*/
class Temp
{
private:
/**
* Pointer to a Node object.
*/
NodePtr node;
public:
/**
* Copy the given pointer to this class.
* @param n A pointer to a Node object to copy.
*/
Temp(NodePtr n) : node(n) {}
/**
* Create a new ScalarStatNode.
* @param s The ScalarStat to place in a node.
*/
Temp(const ScalarStat &s) : node(new ScalarStatNode(s)) {}
/**
* Create a new ScalarProxyNode.
* @param p The ScalarProxy to place in a node.
*/
template <typename T, template <typename T> class Storage, class Bin>
Temp(const ScalarProxy<T, Storage, Bin> &p)
: node(new ScalarProxyNode<T, Storage, Bin>(p)) {}
/**
* Create a new VectorStatNode.
* @param s The VectorStat to place in a node.
*/
Temp(const VectorStat &s) : node(new VectorStatNode(s)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed char value) : node(new ConstNode<signed char>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned char value) : node(new ConstNode<unsigned char>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed short value) : node(new ConstNode<signed short>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned short value) : node(new ConstNode<unsigned short>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed int value) : node(new ConstNode<signed int>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned int value) : node(new ConstNode<unsigned int>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed long value) : node(new ConstNode<signed long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned long value) : node(new ConstNode<unsigned long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(signed long long value)
: node(new ConstNode<signed long long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(unsigned long long value)
: node(new ConstNode<unsigned long long>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(float value) : node(new ConstNode<float>(value)) {}
/**
* Create a ConstNode
* @param value The value of the const node.
*/
Temp(double value) : node(new ConstNode<double>(value)) {}
/**
* Return the node pointer.
* @return the node pointer.
*/
operator NodePtr() { return node;}
};
//////////////////////////////////////////////////////////////////////
//
// Binning Interface
//
//////////////////////////////////////////////////////////////////////
class BinBase
{
private:
off_t memsize;
char *mem;
protected:
off_t size() const { return memsize; }
char *memory();
public:
BinBase(size_t size);
virtual ~BinBase();
virtual void activate() = 0;
void regBin(BinBase *bin, std::string name);
};
} // namespace Detail
template <class BinType>
struct StatBin : public Detail::BinBase
{
private:
std::string _name;
public:
std::string name() const { return _name;}
static StatBin *&curBin() {
static StatBin *current = NULL;
return current;
}
static void setCurBin(StatBin *bin) { curBin() = bin; }
static StatBin *current() { assert(curBin()); return curBin(); }
static off_t &offset() {
static off_t offset = 0;
return offset;
}
static off_t new_offset(size_t size) {
size_t mask = sizeof(u_int64_t) - 1;
off_t off = offset();
// That one is for the last trailing flags byte.
offset() += (size + 1 + mask) & ~mask;
return off;
}
explicit StatBin(std::string name, size_t size = 1024) : Detail::BinBase(size) { _name = name; this->regBin(this, name); }
char *memory(off_t off) {
assert(offset() <= size());
return Detail::BinBase::memory() + off;
}
virtual void activate() { setCurBin(this); }
static void activate(StatBin &bin) { setCurBin(&bin); }
class BinBase
{
private:
int offset;
public:
BinBase() : offset(-1) {}
void allocate(size_t size) {
offset = new_offset(size);
}
char *access() {
assert(offset != -1);
return current()->memory(offset);
}
};
template <class Storage>
class Bin : public BinBase
{
public:
typedef typename Storage::Params Params;
public:
enum { binned = true };
Bin() { allocate(sizeof(Storage)); }
bool initialized() const { return true; }
void init(const Params &params) { }
int size() const { return 1; }
Storage *data(const Params &params) {
assert(initialized());
char *ptr = access();
char *flags = ptr + sizeof(Storage);
if (!(*flags & 0x1)) {
*flags |= 0x1;
new (ptr) Storage(params);
}
return reinterpret_cast<Storage *>(ptr);
}
void reset()
{
char *ptr = access();
char *flags = ptr + size() * sizeof(Storage);
if (!(*flags & 0x1))
return;
Storage *s = reinterpret_cast<Storage *>(ptr);
s->reset();
}
};
template <class Storage>
class VectorBin : public BinBase
{
public:
typedef typename Storage::Params Params;
private:
int _size;
public:
VectorBin() : _size(0) {}
bool initialized() const { return _size > 0; }
void init(int s, const Params &params) {
assert(!initialized());
assert(s > 0);
_size = s;
allocate(_size * sizeof(Storage));
}
int size() const { return _size; }
Storage *data(int index, const Params &params) {
assert(initialized());
assert(index >= 0 && index < size());
char *ptr = access();
char *flags = ptr + size() * sizeof(Storage);
if (!(*flags & 0x1)) {
*flags |= 0x1;
for (int i = 0; i < size(); ++i)
new (ptr + i * sizeof(Storage)) Storage(params);
}
return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
}
void reset()
{
char *ptr = access();
char *flags = ptr + size() * sizeof(Storage);
if (!(*flags & 0x1))
return;
for (int i = 0; i < _size; ++i) {
char *p = ptr + i * sizeof(Storage);
Storage *s = reinterpret_cast<Storage *>(p);
s->reset();
}
}
};
};
class MainBinType {};
typedef StatBin<MainBinType> MainBin;
struct NoBin
{
template <class Storage>
struct Bin
{
public:
typedef typename Storage::Params Params;
enum { binned = false };
private:
char ptr[sizeof(Storage)];
public:
~Bin()
{
reinterpret_cast<Storage *>(ptr)->~Storage();
}
bool initialized() const { return true; }
void init(const Params &params) {
new (ptr) Storage(params);
}
int size() const{ return 1; }
Storage *data(const Params &params) {
assert(initialized());
return reinterpret_cast<Storage *>(ptr);
}
void reset()
{
Storage *s = reinterpret_cast<Storage *>(ptr);
s->reset();
}
};
template <class Storage>
struct VectorBin
{
public:
typedef typename Storage::Params Params;
enum { binned = false };
private:
char *ptr;
int _size;
public:
VectorBin() : ptr(NULL) { }
~VectorBin()
{
if (!initialized())
return;
for (int i = 0; i < _size; ++i) {
char *p = ptr + i * sizeof(Storage);
reinterpret_cast<Storage *>(p)->~Storage();
}
delete [] ptr;
}
bool initialized() const { return ptr != NULL; }
void init(int s, const Params &params) {
assert(s > 0 && "size must be positive!");
assert(!initialized());
_size = s;
ptr = new char[_size * sizeof(Storage)];
for (int i = 0; i < _size; ++i)
new (ptr + i * sizeof(Storage)) Storage(params);
}
int size() const { return _size; }
Storage *data(int index, const Params &params) {
assert(initialized());
assert(index >= 0 && index < size());
return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
}
void reset()
{
for (int i = 0; i < _size; ++i) {
char *p = ptr + i * sizeof(Storage);
Storage *s = reinterpret_cast<Storage *>(p);
s->reset();
}
}
};
};
//////////////////////////////////////////////////////////////////////
//
// Visible Statistics Types
//
//////////////////////////////////////////////////////////////////////
/**
* @defgroup VisibleStats "Statistic Types"
* These are the statistics that are used in the simulator. By default these
* store counters and don't use binning, but are templatized to accept any type
* and any Bin class.
* @{
*/
/**
* This is a simple scalar statistic, like a counter.
* @sa Stat, ScalarBase, StatStor
*/
template <typename T = Counter, class Bin = NoBin>
class Scalar : public Detail::ScalarBase<T, Detail::StatStor, Bin>
{
public:
/** The base implementation. */
typedef Detail::ScalarBase<T, Detail::StatStor, Bin> Base;
/**
* Sets the stat equal to the given value. Calls the base implementation
* of operator=
* @param v The new value.
*/
template <typename U>
void operator=(const U& v) { Base::operator=(v); }
};
/**
* A stat that calculates the per cycle average of a value.
* @sa Stat, ScalarBase, AvgStor
*/
template <typename T = Counter, class Bin = NoBin>
class Average : public Detail::ScalarBase<T, Detail::AvgStor, Bin>
{
public:
/** The base implementation. */
typedef Detail::ScalarBase<T, Detail::AvgStor, Bin> Base;
/**
* Sets the stat equal to the given value. Calls the base implementation
* of operator=
* @param v The new value.
*/
template <typename U>
void operator=(const U& v) { Base::operator=(v); }
};
/**
* A vector of scalar stats.
* @sa Stat, VectorBase, StatStor
*/
template <typename T = Counter, class Bin = NoBin>
class Vector : public Detail::VectorBase<T, Detail::StatStor, Bin>
{ };
/**
* A vector of Average stats.
* @sa Stat, VectorBase, AvgStor
*/
template <typename T = Counter, class Bin = NoBin>
class AverageVector : public Detail::VectorBase<T, Detail::AvgStor, Bin>
{ };
/**
* A 2-Dimensional vecto of scalar stats.
* @sa Stat, Vector2dBase, StatStor
*/
template <typename T = Counter, class Bin = NoBin>
class Vector2d : public Detail::Vector2dBase<T, Detail::StatStor, Bin>
{ };
/**
* A simple distribution stat.
* @sa Stat, DistBase, DistStor
*/
template <typename T = Counter, class Bin = NoBin>
class Distribution : public Detail::DistBase<T, Detail::DistStor, Bin>
{
private:
/** Base implementation. */
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
/** The Parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Set the parameters of this distribution. @sa DistStor::Params
* @param min The minimum value of the distribution.
* @param max The maximum value of the distribution.
* @param bkt The number of values in each bucket.
* @return A reference to this distribution.
*/
Distribution &init(T min, T max, int bkt) {
params.min = min;
params.max = max;
params.bucket_size = bkt;
params.size = (max - min) / bkt + 1;
bin.init(params);
setInit();
return *this;
}
};
/**
* Calculates the mean and variance of all the samples.
* @sa Stat, DistBase, FancyStor
*/
template <typename T = Counter, class Bin = NoBin>
class StandardDeviation : public Detail::DistBase<T, Detail::FancyStor, Bin>
{
private:
/** The base implementation */
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
/** The parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Construct and initialize this distribution.
*/
StandardDeviation() {
bin.init(params);
setInit();
}
};
/**
* Calculates the per cycle mean and variance of the samples.
* @sa Stat, DistBase, AvgFancy
*/
template <typename T = Counter, class Bin = NoBin>
class AverageDeviation : public Detail::DistBase<T, Detail::AvgFancy, Bin>
{
private:
/** The base implementation */
typedef Detail::DistBase<T, Detail::DistStor, Bin> Base;
/** The parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Construct and initialize this distribution.
*/
AverageDeviation() {
bin.init(params);
setInit();
}
};
/**
* A vector of distributions.
* @sa Stat, VectorDistBase, DistStor
*/
template <typename T = Counter, class Bin = NoBin>
class VectorDistribution
: public Detail::VectorDistBase<T, Detail::DistStor, Bin>
{
private:
/** The base implementation */
typedef Detail::VectorDistBase<T, Detail::DistStor, Bin> Base;
/** The parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Initialize storage and parameters for this distribution.
* @param size The size of the vector (the number of distributions).
* @param min The minimum value of the distribution.
* @param max The maximum value of the distribution.
* @param bkt The number of values in each bucket.
* @return A reference to this distribution.
*/
VectorDistribution &init(int size, T min, T max, int bkt) {
params.min = min;
params.max = max;
params.bucket_size = bkt;
params.size = (max - min) / bkt + 1;
bin.init(size, params);
setInit();
return *this;
}
};
/**
* This is a vector of StandardDeviation stats.
* @sa Stat, VectorDistBase, FancyStor
*/
template <typename T = Counter, class Bin = NoBin>
class VectorStandardDeviation
: public Detail::VectorDistBase<T, Detail::FancyStor, Bin>
{
private:
/** The base implementation */
typedef Detail::VectorDistBase<T, Detail::FancyStor, Bin> Base;
/** The parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Initialize storage for this distribution.
* @param size The size of the vector.
* @return A reference to this distribution.
*/
VectorStandardDeviation &init(int size) {
bin.init(size, params);
setInit();
return *this;
}
};
/**
* This is a vector of AverageDeviation stats.
* @sa Stat, VectorDistBase, AvgFancy
*/
template <typename T = Counter, class Bin = NoBin>
class VectorAverageDeviation
: public Detail::VectorDistBase<T, Detail::AvgFancy, Bin>
{
private:
/** The base implementation */
typedef Detail::VectorDistBase<T, Detail::AvgFancy, Bin> Base;
/** The parameter type. */
typedef typename Detail::DistStor<T>::Params Params;
public:
/**
* Initialize storage for this distribution.
* @param size The size of the vector.
* @return A reference to this distribution.
*/
VectorAverageDeviation &init(int size) {
bin.init(size, params);
setInit();
return *this;
}
};
/**
* A formula for statistics that is calculated when printed. A formula is
* stored as a tree of Nodes that represent the equation to calculate.
* @sa Stat, ScalarStat, VectorStat, Node, Detail::Temp
*/
class Formula : public Detail::VectorStat
{
private:
/** The root of the tree which represents the Formula */
Detail::NodePtr root;
friend class Statistics::Detail::Temp;
public:
/**
* Create and initialize thie formula, and register it with the database.
*/
Formula() : VectorStat(true) { setInit(); }
/**
* Create a formula with the given root node, register it with the
* database.
* @param r The root of the expression tree.
*/
Formula(Detail::Temp r) : VectorStat(true) {
root = r;
assert(size());
}
/**
* Set an unitialized Formula to the given root.
* @param r The root of the expression tree.
* @return a reference to this formula.
*/
const Formula &operator=(Detail::Temp r) {
assert(!root && "Can't change formulas");
root = r;
assert(size());
return *this;
}
/**
* Add the given tree to the existing one.
* @param r The root of the expression tree.
* @return a reference to this formula.
*/
const Formula &operator+=(Detail::Temp r) {
using namespace Detail;
if (root)
root = NodePtr(new BinaryNode<std::plus<result_t> >(root, r));
else
root = r;
assert(size());
return *this;
}
/**
* Return the result of the Fomula in a vector. If there were no Vector
* components to the Formula, then the vector is size 1. If there were,
* like x/y with x being a vector of size 3, then the result returned will
* be x[0]/y, x[1]/y, x[2]/y, respectively.
* @return The result vector.
*/
const rvec_t &val() const { return root->val(); }
/**
* Return the total Formula result. If there is a Vector component to this
* Formula, then this is the result of the Formula if the formula is applied
* after summing all the components of the Vector. For example, if Formula
* is x/y where x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If there is no
* Vector component, total() returns the same value as the first entry in the rvec_t
* val() returns.
* @return The total of the result vector.
*/
result_t total() const { return root->total(); }
/**
* Return the number of elements in the tree.
*/
size_t size() const {
if (!root)
return 0;
else
return root->size();
}
/**
* Return true if Formula is binned. i.e. any of its children nodes are binned
*@return True if Formula is binned.
*/
virtual bool binned() const { return root->binned(); }
/**
* Formulas don't need to be reset
*/
virtual void reset() {}
};
/**
* @}
*/
void check();
void dump(std::ostream &stream);
void reset();
void regReset(Callback *cb);
inline Detail::Temp
operator+(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::plus<result_t> >(l, r));
}
inline Detail::Temp
operator-(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::minus<result_t> >(l, r));
}
inline Detail::Temp
operator*(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::multiplies<result_t> >(l, r));
}
inline Detail::Temp
operator/(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::divides<result_t> >(l, r));
}
inline Detail::Temp
operator%(Detail::Temp l, Detail::Temp r)
{
using namespace Detail;
return NodePtr(new BinaryNode<std::modulus<result_t> >(l, r));
}
inline Detail::Temp
operator-(Detail::Temp l)
{
using namespace Detail;
return NodePtr(new UnaryNode<std::negate<result_t> >(l));
}
template <typename T>
inline Detail::Temp
constant(T val)
{
using namespace Detail;
return NodePtr(new ConstNode<T>(val));
}
template <typename T>
inline Detail::Temp
functor(T &val)
{
using namespace Detail;
return NodePtr(new FunctorNode<T>(val));
}
template <typename T>
inline Detail::Temp
scalar(T &val)
{
using namespace Detail;
return NodePtr(new ScalarNode<T>(val));
}
inline Detail::Temp
sum(Detail::Temp val)
{
using namespace Detail;
return NodePtr(new SumNode<std::plus<result_t> >(val));
}
extern bool PrintDescriptions;
} // namespace statistics
#endif // __STATISTICS_HH__