gem5/src/cpu/base.cc
Geoffrey Blake 85940fd537 arch, arm: Preserve TLB bootUncacheability when switching CPUs
The ARM TLBs have a bootUncacheability flag used to make some loads
and stores become uncacheable when booting in FS mode. Later the
flag is cleared to let those loads and stores operate as normal.  When
doing a takeOverFrom(), this flag's state is not preserved and is
momentarily reset until the CPSR is touched. On single core runs this
is a non-issue. On multi-core runs this can lead to crashes on the O3
CPU model from the following series of events:
 1) takeOverFrom executed to switch from Atomic -> O3
 2) All bootUncacheability flags are reset to true
 3) Core2 tries to execute a load covered by bootUncacheability, it
    is flagged as uncacheable
 4) Core2's load needs to replay due to a pipeline flush
 3) Core1 core does an action on CPSR
 4) The handling code for CPSR then checks all other cores
    to determine if bootUncacheability can be set to false
 5) Asynchronously set bootUncacheability on all cores to false
 6) Core2 replays load previously set as uncacheable and notices
    it is now flagged as cacheable, leads to a panic.
This patch implements takeOverFrom() functionality for the ARM TLBs
to preserve flag values when switching from atomic -> detailed.
2014-05-09 18:58:47 -04:00

621 lines
20 KiB
C++

/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* Copyright (c) 2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
* Rick Strong
*/
#include <iostream>
#include <sstream>
#include <string>
#include "arch/tlb.hh"
#include "base/loader/symtab.hh"
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpuevent.hh"
#include "cpu/profile.hh"
#include "cpu/thread_context.hh"
#include "debug/SyscallVerbose.hh"
#include "params/BaseCPU.hh"
#include "sim/full_system.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
// Hack
#include "sim/stat_control.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
: Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
cpu(_cpu), _repeatEvent(true)
{
if (_interval)
cpu->schedule(this, curTick() + _interval);
}
void
CPUProgressEvent::process()
{
Counter temp = cpu->totalOps();
#ifndef NDEBUG
double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
"%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
ipc);
ipc = 0.0;
#else
cprintf("%lli: %s progress event, total committed:%i, progress insts "
"committed: %lli\n", curTick(), cpu->name(), temp,
temp - lastNumInst);
#endif
lastNumInst = temp;
if (_repeatEvent)
cpu->schedule(this, curTick() + _interval);
}
const char *
CPUProgressEvent::description() const
{
return "CPU Progress";
}
BaseCPU::BaseCPU(Params *p, bool is_checker)
: MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
_instMasterId(p->system->getMasterId(name() + ".inst")),
_dataMasterId(p->system->getMasterId(name() + ".data")),
_taskId(ContextSwitchTaskId::Unknown), _pid(Request::invldPid),
_switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
interrupts(p->interrupts), profileEvent(NULL),
numThreads(p->numThreads), system(p->system)
{
// if Python did not provide a valid ID, do it here
if (_cpuId == -1 ) {
_cpuId = cpuList.size();
}
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
_cpuId, _socketId);
if (numThreads > maxThreadsPerCPU)
maxThreadsPerCPU = numThreads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comInstEventQueue[tid] =
new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0) {
const char *cause = "a thread reached the max instruction count";
for (ThreadID tid = 0; tid < numThreads; ++tid)
scheduleInstStop(tid, p->max_insts_any_thread, cause);
}
// Set up instruction-count-based termination events for SimPoints
// Typically, there are more than one action points.
// Simulation.py is responsible to take the necessary actions upon
// exitting the simulation loop.
if (!p->simpoint_start_insts.empty()) {
const char *cause = "simpoint starting point found";
for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
scheduleInstStop(0, p->simpoint_start_insts[i], cause);
}
if (p->max_insts_all_threads != 0) {
const char *cause = "all threads reached the max instruction count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
}
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comLoadEventQueue[tid] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0) {
const char *cause = "a thread reached the max load count";
for (ThreadID tid = 0; tid < numThreads; ++tid)
scheduleLoadStop(tid, p->max_loads_any_thread, cause);
}
if (p->max_loads_all_threads != 0) {
const char *cause = "all threads reached the max load count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
}
}
functionTracingEnabled = false;
if (p->function_trace) {
const string fname = csprintf("ftrace.%s", name());
functionTraceStream = simout.find(fname);
if (!functionTraceStream)
functionTraceStream = simout.create(fname);
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->function_trace_start;
if (p->function_trace_start == 0) {
functionTracingEnabled = true;
} else {
typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
Event *event = new wrap(this, true);
schedule(event, p->function_trace_start);
}
}
// The interrupts should always be present unless this CPU is
// switched in later or in case it is a checker CPU
if (!params()->switched_out && !is_checker) {
if (interrupts) {
interrupts->setCPU(this);
} else {
fatal("CPU %s has no interrupt controller.\n"
"Ensure createInterruptController() is called.\n", name());
}
}
if (FullSystem) {
if (params()->profile)
profileEvent = new ProfileEvent(this, params()->profile);
}
tracer = params()->tracer;
if (params()->isa.size() != numThreads) {
fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
"of threads (%i).\n", params()->isa.size(), numThreads);
}
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
delete profileEvent;
delete[] comLoadEventQueue;
delete[] comInstEventQueue;
}
void
BaseCPU::init()
{
if (!params()->switched_out) {
registerThreadContexts();
verifyMemoryMode();
}
}
void
BaseCPU::startup()
{
if (FullSystem) {
if (!params()->switched_out && profileEvent)
schedule(profileEvent, curTick());
}
if (params()->progress_interval) {
new CPUProgressEvent(this, params()->progress_interval);
}
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
numWorkItemsStarted
.name(name() + ".numWorkItemsStarted")
.desc("number of work items this cpu started")
;
numWorkItemsCompleted
.name(name() + ".numWorkItemsCompleted")
.desc("number of work items this cpu completed")
;
int size = threadContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
threadContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
threadContexts[0]->regStats(name());
}
BaseMasterPort &
BaseCPU::getMasterPort(const string &if_name, PortID idx)
{
// Get the right port based on name. This applies to all the
// subclasses of the base CPU and relies on their implementation
// of getDataPort and getInstPort. In all cases there methods
// return a MasterPort pointer.
if (if_name == "dcache_port")
return getDataPort();
else if (if_name == "icache_port")
return getInstPort();
else
return MemObject::getMasterPort(if_name, idx);
}
void
BaseCPU::registerThreadContexts()
{
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
ThreadContext *tc = threadContexts[tid];
/** This is so that contextId and cpuId match where there is a
* 1cpu:1context relationship. Otherwise, the order of registration
* could affect the assignment and cpu 1 could have context id 3, for
* example. We may even want to do something like this for SMT so that
* cpu 0 has the lowest thread contexts and cpu N has the highest, but
* I'll just do this for now
*/
if (numThreads == 1)
tc->setContextId(system->registerThreadContext(tc, _cpuId));
else
tc->setContextId(system->registerThreadContext(tc));
if (!FullSystem)
tc->getProcessPtr()->assignThreadContext(tc->contextId());
}
}
int
BaseCPU::findContext(ThreadContext *tc)
{
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
if (tc == threadContexts[tid])
return tid;
}
return 0;
}
void
BaseCPU::switchOut()
{
assert(!_switchedOut);
_switchedOut = true;
if (profileEvent && profileEvent->scheduled())
deschedule(profileEvent);
// Flush all TLBs in the CPU to avoid having stale translations if
// it gets switched in later.
flushTLBs();
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(threadContexts.size() == oldCPU->threadContexts.size());
assert(_cpuId == oldCPU->cpuId());
assert(_switchedOut);
assert(oldCPU != this);
_pid = oldCPU->getPid();
_taskId = oldCPU->taskId();
_switchedOut = false;
ThreadID size = threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *newTC = threadContexts[i];
ThreadContext *oldTC = oldCPU->threadContexts[i];
newTC->takeOverFrom(oldTC);
CpuEvent::replaceThreadContext(oldTC, newTC);
assert(newTC->contextId() == oldTC->contextId());
assert(newTC->threadId() == oldTC->threadId());
system->replaceThreadContext(newTC, newTC->contextId());
/* This code no longer works since the zero register (e.g.,
* r31 on Alpha) doesn't necessarily contain zero at this
* point.
if (DTRACE(Context))
ThreadContext::compare(oldTC, newTC);
*/
BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
// Move over any table walker ports if they exist
if (new_itb_port) {
assert(!new_itb_port->isConnected());
assert(old_itb_port);
assert(old_itb_port->isConnected());
BaseSlavePort &slavePort = old_itb_port->getSlavePort();
old_itb_port->unbind();
new_itb_port->bind(slavePort);
}
if (new_dtb_port) {
assert(!new_dtb_port->isConnected());
assert(old_dtb_port);
assert(old_dtb_port->isConnected());
BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
old_dtb_port->unbind();
new_dtb_port->bind(slavePort);
}
newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
// Checker whether or not we have to transfer CheckerCPU
// objects over in the switch
CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
if (oldChecker && newChecker) {
BaseMasterPort *old_checker_itb_port =
oldChecker->getITBPtr()->getMasterPort();
BaseMasterPort *old_checker_dtb_port =
oldChecker->getDTBPtr()->getMasterPort();
BaseMasterPort *new_checker_itb_port =
newChecker->getITBPtr()->getMasterPort();
BaseMasterPort *new_checker_dtb_port =
newChecker->getDTBPtr()->getMasterPort();
newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
// Move over any table walker ports if they exist for checker
if (new_checker_itb_port) {
assert(!new_checker_itb_port->isConnected());
assert(old_checker_itb_port);
assert(old_checker_itb_port->isConnected());
BaseSlavePort &slavePort =
old_checker_itb_port->getSlavePort();
old_checker_itb_port->unbind();
new_checker_itb_port->bind(slavePort);
}
if (new_checker_dtb_port) {
assert(!new_checker_dtb_port->isConnected());
assert(old_checker_dtb_port);
assert(old_checker_dtb_port->isConnected());
BaseSlavePort &slavePort =
old_checker_dtb_port->getSlavePort();
old_checker_dtb_port->unbind();
new_checker_dtb_port->bind(slavePort);
}
}
}
interrupts = oldCPU->interrupts;
interrupts->setCPU(this);
oldCPU->interrupts = NULL;
if (FullSystem) {
for (ThreadID i = 0; i < size; ++i)
threadContexts[i]->profileClear();
if (profileEvent)
schedule(profileEvent, curTick());
}
// All CPUs have an instruction and a data port, and the new CPU's
// ports are dangling while the old CPU has its ports connected
// already. Unbind the old CPU and then bind the ports of the one
// we are switching to.
assert(!getInstPort().isConnected());
assert(oldCPU->getInstPort().isConnected());
BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
oldCPU->getInstPort().unbind();
getInstPort().bind(inst_peer_port);
assert(!getDataPort().isConnected());
assert(oldCPU->getDataPort().isConnected());
BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
oldCPU->getDataPort().unbind();
getDataPort().bind(data_peer_port);
}
void
BaseCPU::flushTLBs()
{
for (ThreadID i = 0; i < threadContexts.size(); ++i) {
ThreadContext &tc(*threadContexts[i]);
CheckerCPU *checker(tc.getCheckerCpuPtr());
tc.getITBPtr()->flushAll();
tc.getDTBPtr()->flushAll();
if (checker) {
checker->getITBPtr()->flushAll();
checker->getDTBPtr()->flushAll();
}
}
}
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
: cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
ThreadID size = cpu->threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *tc = cpu->threadContexts[i];
tc->profileSample();
}
cpu->schedule(this, curTick() + interval);
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(instCnt);
if (!_switchedOut) {
/* Unlike _pid, _taskId is not serialized, as they are dynamically
* assigned unique ids that are only meaningful for the duration of
* a specific run. We will need to serialize the entire taskMap in
* system. */
SERIALIZE_SCALAR(_pid);
interrupts->serialize(os);
// Serialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i) {
nameOut(os, csprintf("%s.xc.%i", name(), i));
serializeThread(os, i);
}
}
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(instCnt);
if (!_switchedOut) {
UNSERIALIZE_SCALAR(_pid);
interrupts->unserialize(cp, section);
// Unserialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i)
unserializeThread(cp, csprintf("%s.xc.%i", section, i), i);
}
}
void
BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
{
const Tick now(comInstEventQueue[tid]->getCurTick());
Event *event(new LocalSimLoopExitEvent(cause, 0));
comInstEventQueue[tid]->schedule(event, now + insts);
}
void
BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
{
const Tick now(comLoadEventQueue[tid]->getCurTick());
Event *event(new LocalSimLoopExitEvent(cause, 0));
comLoadEventQueue[tid]->schedule(event, now + loads);
}
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick() - functionEntryTick, curTick(), sym_str);
functionEntryTick = curTick();
}
}