gem5/cpu/simple/cpu.cc
Steve Reinhardt 71c2c962db Clean up "using" declarations.
arch/alpha/isa_traits.hh:
    No unprotected "using" in header files.
cpu/simple/cpu.cc:
    Fix ISA namespace "using" statement.

--HG--
extra : convert_revision : 317ea40f8de00748d7613a0116edab05770bdc72
2006-03-12 15:14:07 -05:00

1206 lines
31 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <list>
#include <sstream>
#include <string>
#include "arch/utility.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/stats/events.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/simple/cpu.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "kern/kernel_stats.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "mem/functional/memory_control.hh"
#include "mem/functional/physical.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/memory.hh"
#endif // FULL_SYSTEM
using namespace std;
using namespace TheISA;
SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
{
}
void
SimpleCPU::init()
{
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
void
SimpleCPU::TickEvent::process()
{
int count = width;
do {
cpu->tick();
} while (--count > 0 && cpu->status() == Running);
}
const char *
SimpleCPU::TickEvent::description()
{
return "SimpleCPU tick event";
}
bool
SimpleCPU::CpuPort::recvTiming(Packet &pkt)
{
cpu->processResponse(pkt);
return true;
}
Tick
SimpleCPU::CpuPort::recvAtomic(Packet &pkt)
{
panic("CPU doesn't expect callback!");
return curTick;
}
void
SimpleCPU::CpuPort::recvFunctional(Packet &pkt)
{
panic("CPU doesn't expect callback!");
}
void
SimpleCPU::CpuPort::recvStatusChange(Status status)
{
cpu->recvStatusChange(status);
}
Packet *
SimpleCPU::CpuPort::recvRetry()
{
return cpu->processRetry();
}
SimpleCPU::SimpleCPU(Params *p)
: BaseCPU(p), icachePort(this),
dcachePort(this), tickEvent(this, p->width), cpuXC(NULL)
{
_status = Idle;
//Create Memory Ports (conect them up)
p->mem->addPort("DCACHE");
dcachePort.setPeer(p->mem->getPort("DCACHE"));
(p->mem->getPort("DCACHE"))->setPeer(&dcachePort);
p->mem->addPort("ICACHE");
icachePort.setPeer(p->mem->getPort("ICACHE"));
(p->mem->getPort("ICACHE"))->setPeer(&icachePort);
#if FULL_SYSTEM
cpuXC = new CPUExecContext(this, 0, p->system, p->itb, p->dtb, p->mem);
#else
cpuXC = new CPUExecContext(this, /* thread_num */ 0, p->process, /* asid */ 0,
&dcachePort);
#endif // !FULL_SYSTEM
xcProxy = cpuXC->getProxy();
#if SIMPLE_CPU_MEM_ATOMIC || SIMPLE_CPU_MEM_IMMEDIATE
ifetch_req = new CpuRequest;
ifetch_req->asid = 0;
ifetch_req->size = sizeof(MachInst);
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->data = (uint8_t *)&inst;
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
data_read_req = new CpuRequest;
data_read_req->asid = 0;
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->data = new uint8_t[8];
data_read_pkt->req = data_read_req;
data_write_req = new CpuRequest;
data_write_req->asid = 0;
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
#endif
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
execContexts.push_back(xcProxy);
}
SimpleCPU::~SimpleCPU()
{
}
void
SimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == DcacheWaitResponse) {
DPRINTF(Sampler,"Outstanding dcache access, waiting for completion\n");
_status = DcacheWaitSwitch;
}
else {
_status = SwitchedOut;
if (tickEvent.scheduled())
tickEvent.squash();
sampler->signalSwitched();
}
}
void
SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
assert(!tickEvent.scheduled());
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
}
}
}
void
SimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
notIdleFraction++;
scheduleTickEvent(delay);
_status = Running;
}
void
SimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Running);
notIdleFraction--;
unscheduleTickEvent();
_status = Idle;
}
void
SimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
SimpleCPU::resetStats()
{
startNumInst = numInst;
notIdleFraction = (_status != Idle);
}
void
SimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
SERIALIZE_ENUM(_status);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
}
void
SimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
SimpleCPU::copySrcTranslate(Addr src)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address Fault fault = cpuXC->translateDataReadReq(req);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
#else
return NoFault;
#endif
}
Fault
SimpleCPU::copy(Addr dest)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
dcacheInterface->access(memReq);
}
}
else
assert(!fault->isAlignmentFault());
return fault;
#else
panic("copy not implemented");
return NoFault;
#endif
}
// precise architected memory state accessor macros
template <class T>
Fault
SimpleCPU::read(Addr addr, T &data, unsigned flags)
{
if (status() == DcacheWaitResponse || status() == DcacheWaitSwitch) {
// Fault fault = xc->read(memReq,data);
// Not sure what to check for no fault...
if (data_read_pkt->result == Success) {
memcpy(&data, data_read_pkt->data, sizeof(T));
}
if (traceData) {
traceData->setAddr(addr);
}
// @todo: Figure out a way to create a Fault from the packet result.
return NoFault;
}
// memReq->reset(addr, sizeof(T), flags);
#if SIMPLE_CPU_MEM_TIMING
CpuRequest *data_read_req = new CpuRequest;
#endif
data_read_req->vaddr = addr;
data_read_req->size = sizeof(T);
data_read_req->flags = flags;
data_read_req->time = curTick;
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->req = data_read_req;
data_read_pkt->data = new uint8_t[8];
#endif
data_read_pkt->addr = data_read_req->paddr;
data_read_pkt->size = sizeof(T);
sendDcacheRequest(data_read_pkt);
#if SIMPLE_CPU_MEM_IMMEDIATE
// Need to find a way to not duplicate code above.
if (data_read_pkt->result == Success) {
memcpy(&data, data_read_pkt->data, sizeof(T));
}
if (traceData) {
traceData->setAddr(addr);
}
// @todo: Figure out a way to create a Fault from the packet result.
return NoFault;
#endif
}
/*
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
} else {
// do functional access
fault = cpuXC->read(memReq, data);
}
} else if(fault == NoFault) {
// do functional access
fault = cpuXC->read(memReq, data);
}
*/
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->flags & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
data_write_req->vaddr = addr;
data_write_req->time = curTick;
data_write_req->size = sizeof(T);
data_write_req->flags = flags;
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->data = new uint8_t[64];
memcpy(data_write_pkt->data, &data, sizeof(T));
#else
data_write_pkt->data = (uint8_t *)&data;
#endif
data_write_pkt->addr = data_write_req->paddr;
data_write_pkt->size = sizeof(T);
sendDcacheRequest(data_write_pkt);
}
/*
// do functional access
if (fault == NoFault)
fault = cpuXC->write(memReq, data);
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Write;
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
}
}
*/
if (res && (fault == NoFault))
*res = data_write_pkt->result;
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->flags & UNCACHEABLE)
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
SimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
void
SimpleCPU::sendIcacheRequest(Packet *pkt)
{
assert(!tickEvent.scheduled());
#if SIMPLE_CPU_MEM_TIMING
retry_pkt = pkt;
bool success = icachePort.sendTiming(*pkt);
unscheduleTickEvent();
lastIcacheStall = curTick;
if (!success) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
}
#elif SIMPLE_CPU_MEM_ATOMIC
Tick latency = icachePort.sendAtomic(*pkt);
unscheduleTickEvent();
scheduleTickEvent(latency);
// Note that Icache miss cycles will be incorrect. Unless
// we check the status of the packet sent (is this valid?),
// we won't know if the latency is a hit or a miss.
icacheStallCycles += latency;
_status = IcacheAccessComplete;
#elif SIMPLE_CPU_MEM_IMMEDIATE
icachePort.sendAtomic(*pkt);
#else
#error "SimpleCPU has no mem model set"
#endif
}
void
SimpleCPU::sendDcacheRequest(Packet *pkt)
{
assert(!tickEvent.scheduled());
#if SIMPLE_CPU_MEM_TIMING
unscheduleTickEvent();
retry_pkt = pkt;
bool success = dcachePort.sendTiming(*pkt);
lastDcacheStall = curTick;
if (!success) {
_status = DcacheRetry;
} else {
_status = DcacheWaitResponse;
}
#elif SIMPLE_CPU_MEM_ATOMIC
unscheduleTickEvent();
Tick latency = dcachePort.sendAtomic(*pkt);
scheduleTickEvent(latency);
// Note that Dcache miss cycles will be incorrect. Unless
// we check the status of the packet sent (is this valid?),
// we won't know if the latency is a hit or a miss.
dcacheStallCycles += latency;
#elif SIMPLE_CPU_MEM_IMMEDIATE
dcachePort.sendAtomic(*pkt);
#else
#error "SimpleCPU has no mem model set"
#endif
}
void
SimpleCPU::processResponse(Packet &response)
{
assert(SIMPLE_CPU_MEM_TIMING);
// For what things is the CPU the consumer of the packet it sent
// out? This may create a memory leak if that's the case and it's
// expected of the SimpleCPU to delete its own packet.
Packet *pkt = &response;
switch (status()) {
case IcacheWaitResponse:
icacheStallCycles += curTick - lastIcacheStall;
_status = IcacheAccessComplete;
scheduleTickEvent(1);
// Copy the icache data into the instruction itself.
memcpy(&inst, pkt->data, sizeof(inst));
delete pkt;
break;
case DcacheWaitResponse:
if (pkt->cmd == Read) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
delete pkt;
dcacheStallCycles += curTick - lastDcacheStall;
_status = Running;
scheduleTickEvent(1);
break;
case DcacheWaitSwitch:
if (pkt->cmd == Read) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
delete pkt;
_status = SwitchedOut;
sampler->signalSwitched();
case SwitchedOut:
// If this CPU has been switched out due to sampling/warm-up,
// ignore any further status changes (e.g., due to cache
// misses outstanding at the time of the switch).
delete pkt;
return;
default:
panic("SimpleCPU::processCacheCompletion: bad state");
break;
}
}
Packet *
SimpleCPU::processRetry()
{
#if SIMPLE_CPU_MEM_TIMING
switch(status()) {
case IcacheRetry:
icacheRetryCycles += curTick - lastIcacheStall;
return retry_pkt;
break;
case DcacheRetry:
dcacheRetryCycles += curTick - lastDcacheStall;
return retry_pkt;
break;
default:
panic("SimpleCPU::processRetry: bad state");
break;
}
#else
panic("shouldn't be here");
#endif
}
#if FULL_SYSTEM
void
SimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
/* start simulation, program loaded, processor precise state initialized */
void
SimpleCPU::tick()
{
numCycles++;
traceData = NULL;
Fault fault = NoFault;
#if FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !cpuXC->inPalMode() &&
status() != IcacheMissComplete) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (cpuXC->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (cpuXC->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpuXC->cpu->intr_status();
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (cpuXC->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (ipl && ipl > cpuXC->readMiscReg(IPR_IPLR)) {
cpuXC->setMiscReg(IPR_ISR, summary);
cpuXC->setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xcProxy);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
cpuXC->readMiscReg(IPR_IPLR), ipl, summary);
}
}
#endif
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
cpuXC->setFloatRegDouble(ZeroReg, 0.0);
#endif // ALPHA_ISA
if (status() == IcacheAccessComplete) {
// We've already fetched an instruction and were stalled on an
// I-cache miss. No need to fetch it again.
// Set status to running; tick event will get rescheduled if
// necessary at end of tick() function.
_status = Running;
} else {
// Try to fetch an instruction
// set up memory request for instruction fetch
#if FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
#if SIMPLE_CPU_MEM_TIMING
CpuRequest *ifetch_req = new CpuRequest();
ifetch_req->size = sizeof(MachInst);
#endif
ifetch_req->vaddr = cpuXC->readPC() & ~3;
ifetch_req->time = curTick;
/* memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
IFETCH_FLAGS(xc->regs.pc));
*/
fault = cpuXC->translateInstReq(ifetch_req);
if (fault == NoFault) {
#if SIMPLE_CPU_MEM_TIMING
Packet *ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->data = (uint8_t *)&inst;
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
#endif
ifetch_pkt->addr = ifetch_req->paddr;
sendIcacheRequest(ifetch_pkt);
#if SIMPLE_CPU_MEM_TIMING || SIMPLE_CPU_MEM_ATOMIC
return;
#endif
/*
if (icacheInterface && fault == NoFault) {
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags |= INST_READ;
MemAccessResult result = icacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && icacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastIcacheStall = curTick;
unscheduleTickEvent();
_status = IcacheMissStall;
return;
}
}
*/
}
}
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
if (fault == NoFault) {
// keep an instruction count
numInst++;
numInsts++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = gtoh(inst);
curStaticInst = StaticInst::decode(makeExtMI(inst, cpuXC->readPC()));
traceData = Trace::getInstRecord(curTick, xcProxy, this, curStaticInst,
cpuXC->readPC());
#if FULL_SYSTEM
cpuXC->setInst(inst);
#endif // FULL_SYSTEM
cpuXC->func_exe_inst++;
fault = curStaticInst->execute(this, traceData);
#if FULL_SYSTEM
if (system->kernelBinning->fnbin) {
assert(kernelStats);
system->kernelBinning->execute(xcProxy, inst);
}
if (cpuXC->profile) {
bool usermode =
(cpuXC->readMiscReg(AlphaISA::IPR_DTB_CM) & 0x18) != 0;
cpuXC->profilePC = usermode ? 1 : cpuXC->readPC();
ProfileNode *node = cpuXC->profile->consume(xcProxy, inst);
if (node)
cpuXC->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
// If we have a dcache miss, then we can't finialize the instruction
// trace yet because we want to populate it with the data later
if (traceData && (status() != DcacheWaitResponse)) {
traceData->finalize();
}
traceFunctions(cpuXC->readPC());
} // if (fault == NoFault)
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC %08p", fault, cpuXC->readPC());
#endif // FULL_SYSTEM
}
else {
#if THE_ISA != MIPS_ISA
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
} while (oldpc != cpuXC->readPC());
#endif
assert(status() == Running ||
status() == Idle ||
status() == DcacheWaitResponse);
if (status() == Running && !tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(1));
}
////////////////////////////////////////////////////////////////////////
//
// SimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Memory *> mem;
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(mem, "memory"),
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
CREATE_SIM_OBJECT(SimpleCPU)
{
SimpleCPU::Params *params = new SimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->mem = mem;
params->process = workload;
#endif
SimpleCPU *cpu = new SimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)