gem5/src/mem/ruby/network/simple/SimpleNetwork.cc
Nilay Vaish a49b1df3f0 ruby: record fully busy cycle with in the controller
This patch does several things. First, the counter for fully busy cycles for a
controller is now kept with in the controller, instead of being part of the profiler.
Second, the topology class no longer keeps an array of controllers which was only
used for printing stats. Instead, ruby system will now ask each controller to print
the stats. Thirdly, the statistical variable for recording how many different types
were created is being moved in to the controller from the profiler. Note that for
printing, the profiler will collate results from different controllers.
2013-02-10 21:26:22 -06:00

366 lines
11 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include <numeric>
#include "base/cast.hh"
#include "base/stl_helpers.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/BasicLink.hh"
#include "mem/ruby/network/simple/SimpleLink.hh"
#include "mem/ruby/network/simple/SimpleNetwork.hh"
#include "mem/ruby/network/simple/Switch.hh"
#include "mem/ruby/network/simple/Throttle.hh"
#include "mem/ruby/network/Topology.hh"
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::deletePointers;
SimpleNetwork::SimpleNetwork(const Params *p)
: Network(p)
{
m_buffer_size = p->buffer_size;
m_endpoint_bandwidth = p->endpoint_bandwidth;
m_adaptive_routing = p->adaptive_routing;
// Note: the parent Network Object constructor is called before the
// SimpleNetwork child constructor. Therefore, the member variables
// used below should already be initialized.
m_endpoint_switches.resize(m_nodes);
m_in_use.resize(m_virtual_networks);
m_ordered.resize(m_virtual_networks);
for (int i = 0; i < m_virtual_networks; i++) {
m_in_use[i] = false;
m_ordered[i] = false;
}
// Allocate to and from queues
m_toNetQueues.resize(m_nodes);
m_fromNetQueues.resize(m_nodes);
for (int node = 0; node < m_nodes; node++) {
m_toNetQueues[node].resize(m_virtual_networks);
m_fromNetQueues[node].resize(m_virtual_networks);
for (int j = 0; j < m_virtual_networks; j++) {
m_toNetQueues[node][j] =
new MessageBuffer(csprintf("toNet node %d j %d", node, j));
m_fromNetQueues[node][j] =
new MessageBuffer(csprintf("fromNet node %d j %d", node, j));
}
}
// record the routers
for (vector<BasicRouter*>::const_iterator i =
m_topology_ptr->params()->routers.begin();
i != m_topology_ptr->params()->routers.end(); ++i) {
Switch* s = safe_cast<Switch*>(*i);
m_switch_ptr_vector.push_back(s);
s->init_net_ptr(this);
}
}
void
SimpleNetwork::init()
{
Network::init();
// The topology pointer should have already been initialized in
// the parent class network constructor.
assert(m_topology_ptr != NULL);
// false because this isn't a reconfiguration
m_topology_ptr->createLinks(this, false);
}
void
SimpleNetwork::reset()
{
for (int node = 0; node < m_nodes; node++) {
for (int j = 0; j < m_virtual_networks; j++) {
m_toNetQueues[node][j]->clear();
m_fromNetQueues[node][j]->clear();
}
}
for(int i = 0; i < m_switch_ptr_vector.size(); i++){
m_switch_ptr_vector[i]->clearBuffers();
}
}
SimpleNetwork::~SimpleNetwork()
{
for (int i = 0; i < m_nodes; i++) {
deletePointers(m_toNetQueues[i]);
deletePointers(m_fromNetQueues[i]);
}
deletePointers(m_switch_ptr_vector);
deletePointers(m_buffers_to_free);
// delete m_topology_ptr;
}
// From a switch to an endpoint node
void
SimpleNetwork::makeOutLink(SwitchID src, NodeID dest, BasicLink* link,
LinkDirection direction,
const NetDest& routing_table_entry,
bool isReconfiguration)
{
assert(dest < m_nodes);
assert(src < m_switch_ptr_vector.size());
assert(m_switch_ptr_vector[src] != NULL);
if (isReconfiguration) {
m_switch_ptr_vector[src]->reconfigureOutPort(routing_table_entry);
return;
}
SimpleExtLink *simple_link = safe_cast<SimpleExtLink*>(link);
m_switch_ptr_vector[src]->addOutPort(m_fromNetQueues[dest],
routing_table_entry,
simple_link->m_latency,
simple_link->m_bw_multiplier);
m_endpoint_switches[dest] = m_switch_ptr_vector[src];
}
// From an endpoint node to a switch
void
SimpleNetwork::makeInLink(NodeID src, SwitchID dest, BasicLink* link,
LinkDirection direction,
const NetDest& routing_table_entry,
bool isReconfiguration)
{
assert(src < m_nodes);
if (isReconfiguration) {
// do nothing
return;
}
m_switch_ptr_vector[dest]->addInPort(m_toNetQueues[src]);
}
// From a switch to a switch
void
SimpleNetwork::makeInternalLink(SwitchID src, SwitchID dest, BasicLink* link,
LinkDirection direction,
const NetDest& routing_table_entry,
bool isReconfiguration)
{
if (isReconfiguration) {
m_switch_ptr_vector[src]->reconfigureOutPort(routing_table_entry);
return;
}
// Create a set of new MessageBuffers
std::vector<MessageBuffer*> queues;
for (int i = 0; i < m_virtual_networks; i++) {
// allocate a buffer
MessageBuffer* buffer_ptr = new MessageBuffer;
buffer_ptr->setOrdering(true);
if (m_buffer_size > 0) {
buffer_ptr->resize(m_buffer_size);
}
queues.push_back(buffer_ptr);
// remember to deallocate it
m_buffers_to_free.push_back(buffer_ptr);
}
// Connect it to the two switches
SimpleIntLink *simple_link = safe_cast<SimpleIntLink*>(link);
m_switch_ptr_vector[dest]->addInPort(queues);
m_switch_ptr_vector[src]->addOutPort(queues, routing_table_entry,
simple_link->m_latency,
simple_link->m_bw_multiplier);
}
void
SimpleNetwork::checkNetworkAllocation(NodeID id, bool ordered, int network_num)
{
assert(id < m_nodes);
assert(network_num < m_virtual_networks);
if (ordered) {
m_ordered[network_num] = true;
}
m_in_use[network_num] = true;
}
MessageBuffer*
SimpleNetwork::getToNetQueue(NodeID id, bool ordered, int network_num,
std::string vnet_type)
{
checkNetworkAllocation(id, ordered, network_num);
return m_toNetQueues[id][network_num];
}
MessageBuffer*
SimpleNetwork::getFromNetQueue(NodeID id, bool ordered, int network_num,
std::string vnet_type)
{
checkNetworkAllocation(id, ordered, network_num);
return m_fromNetQueues[id][network_num];
}
const std::vector<Throttle*>*
SimpleNetwork::getThrottles(NodeID id) const
{
assert(id >= 0);
assert(id < m_nodes);
assert(m_endpoint_switches[id] != NULL);
return m_endpoint_switches[id]->getThrottles();
}
void
SimpleNetwork::printStats(ostream& out) const
{
out << endl;
out << "Network Stats" << endl;
out << "-------------" << endl;
out << endl;
//
// Determine total counts before printing out each switch's stats
//
std::vector<uint64> total_msg_counts;
total_msg_counts.resize(MessageSizeType_NUM);
for (MessageSizeType type = MessageSizeType_FIRST;
type < MessageSizeType_NUM;
++type) {
total_msg_counts[type] = 0;
}
for (int i = 0; i < m_switch_ptr_vector.size(); i++) {
const std::vector<Throttle*>* throttles =
m_switch_ptr_vector[i]->getThrottles();
for (int p = 0; p < throttles->size(); p++) {
const std::vector<std::vector<int> >& message_counts =
((*throttles)[p])->getCounters();
for (MessageSizeType type = MessageSizeType_FIRST;
type < MessageSizeType_NUM;
++type) {
const std::vector<int> &mct = message_counts[type];
int sum = accumulate(mct.begin(), mct.end(), 0);
total_msg_counts[type] += uint64(sum);
}
}
}
uint64 total_msgs = 0;
uint64 total_bytes = 0;
for (MessageSizeType type = MessageSizeType_FIRST;
type < MessageSizeType_NUM;
++type) {
if (total_msg_counts[type] > 0) {
out << "total_msg_count_" << type << ": " << total_msg_counts[type]
<< " " << total_msg_counts[type] *
uint64(MessageSizeType_to_int(type))
<< endl;
total_msgs += total_msg_counts[type];
total_bytes += total_msg_counts[type] *
uint64(MessageSizeType_to_int(type));
}
}
out << "total_msgs: " << total_msgs
<< " total_bytes: " << total_bytes << endl;
out << endl;
for (int i = 0; i < m_switch_ptr_vector.size(); i++) {
m_switch_ptr_vector[i]->printStats(out);
}
}
void
SimpleNetwork::clearStats()
{
for (int i = 0; i < m_switch_ptr_vector.size(); i++) {
m_switch_ptr_vector[i]->clearStats();
}
}
void
SimpleNetwork::print(ostream& out) const
{
out << "[SimpleNetwork]";
}
SimpleNetwork *
SimpleNetworkParams::create()
{
return new SimpleNetwork(this);
}
/*
* The simple network has an array of switches. These switches have buffers
* that need to be accessed for functional reads and writes. Also the links
* between different switches have buffers that need to be accessed.
*/
bool
SimpleNetwork::functionalRead(Packet *pkt)
{
for (unsigned int i = 0; i < m_switch_ptr_vector.size(); i++) {
if (m_switch_ptr_vector[i]->functionalRead(pkt)) {
return true;
}
}
for (unsigned int i = 0; i < m_buffers_to_free.size(); ++i) {
if (m_buffers_to_free[i]->functionalRead(pkt)) {
return true;
}
}
return false;
}
uint32_t
SimpleNetwork::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
for (unsigned int i = 0; i < m_switch_ptr_vector.size(); i++) {
num_functional_writes += m_switch_ptr_vector[i]->functionalWrite(pkt);
}
for (unsigned int i = 0; i < m_buffers_to_free.size(); ++i) {
num_functional_writes += m_buffers_to_free[i]->functionalWrite(pkt);
}
return num_functional_writes;
}