gem5/src/sim/system.hh
Brandon Potter 2c1286865f syscall-emul: Rewrite system call exit code
The changeset does a major refactor on the exit, exit_group, and
futex system calls regarding exit functionality.

A FutexMap class and related structures are added into a new
file. This increases code clarity by encapsulating the futex
operations and the futex state into an object.

Several exit conditions were added to allow the simulator to end
processes under certain conditions. Also, the simulation only
exits now when all processes have finished executing.

Change-Id: I1ee244caa9b5586fe7375e5b9b50fd3959b9655e
Reviewed-on: https://gem5-review.googlesource.com/2269
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-03-09 22:42:45 +00:00

591 lines
17 KiB
C++

/*
* Copyright (c) 2012, 2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Lisa Hsu
* Nathan Binkert
* Rick Strong
*/
#ifndef __SYSTEM_HH__
#define __SYSTEM_HH__
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "arch/isa_traits.hh"
#include "base/loader/symtab.hh"
#include "base/statistics.hh"
#include "config/the_isa.hh"
#include "enums/MemoryMode.hh"
#include "mem/mem_object.hh"
#include "mem/physical.hh"
#include "mem/port.hh"
#include "mem/port_proxy.hh"
#include "params/System.hh"
#include "sim/futex_map.hh"
#include "sim/se_signal.hh"
/**
* To avoid linking errors with LTO, only include the header if we
* actually have the definition.
*/
#if THE_ISA != NULL_ISA
#include "cpu/pc_event.hh"
#endif
class BaseRemoteGDB;
class GDBListener;
class KvmVM;
class ObjectFile;
class ThreadContext;
class System : public MemObject
{
private:
/**
* Private class for the system port which is only used as a
* master for debug access and for non-structural entities that do
* not have a port of their own.
*/
class SystemPort : public MasterPort
{
public:
/**
* Create a system port with a name and an owner.
*/
SystemPort(const std::string &_name, MemObject *_owner)
: MasterPort(_name, _owner)
{ }
bool recvTimingResp(PacketPtr pkt) override
{ panic("SystemPort does not receive timing!\n"); return false; }
void recvReqRetry() override
{ panic("SystemPort does not expect retry!\n"); }
};
SystemPort _systemPort;
public:
/**
* After all objects have been created and all ports are
* connected, check that the system port is connected.
*/
void init() override;
/**
* Get a reference to the system port that can be used by
* non-structural simulation objects like processes or threads, or
* external entities like loaders and debuggers, etc, to access
* the memory system.
*
* @return a reference to the system port we own
*/
MasterPort& getSystemPort() { return _systemPort; }
/**
* Additional function to return the Port of a memory object.
*/
BaseMasterPort& getMasterPort(const std::string &if_name,
PortID idx = InvalidPortID) override;
/** @{ */
/**
* Is the system in atomic mode?
*
* There are currently two different atomic memory modes:
* 'atomic', which supports caches; and 'atomic_noncaching', which
* bypasses caches. The latter is used by hardware virtualized
* CPUs. SimObjects are expected to use Port::sendAtomic() and
* Port::recvAtomic() when accessing memory in this mode.
*/
bool isAtomicMode() const {
return memoryMode == Enums::atomic ||
memoryMode == Enums::atomic_noncaching;
}
/**
* Is the system in timing mode?
*
* SimObjects are expected to use Port::sendTiming() and
* Port::recvTiming() when accessing memory in this mode.
*/
bool isTimingMode() const {
return memoryMode == Enums::timing;
}
/**
* Should caches be bypassed?
*
* Some CPUs need to bypass caches to allow direct memory
* accesses, which is required for hardware virtualization.
*/
bool bypassCaches() const {
return memoryMode == Enums::atomic_noncaching;
}
/** @} */
/** @{ */
/**
* Get the memory mode of the system.
*
* \warn This should only be used by the Python world. The C++
* world should use one of the query functions above
* (isAtomicMode(), isTimingMode(), bypassCaches()).
*/
Enums::MemoryMode getMemoryMode() const { return memoryMode; }
/**
* Change the memory mode of the system.
*
* \warn This should only be called by the Python!
*
* @param mode Mode to change to (atomic/timing/...)
*/
void setMemoryMode(Enums::MemoryMode mode);
/** @} */
/**
* Get the cache line size of the system.
*/
unsigned int cacheLineSize() const { return _cacheLineSize; }
#if THE_ISA != NULL_ISA
PCEventQueue pcEventQueue;
#endif
std::vector<ThreadContext *> threadContexts;
int _numContexts;
const bool multiThread;
ThreadContext *getThreadContext(ContextID tid)
{
return threadContexts[tid];
}
int numContexts()
{
assert(_numContexts == (int)threadContexts.size());
return _numContexts;
}
/** Return number of running (non-halted) thread contexts in
* system. These threads could be Active or Suspended. */
int numRunningContexts();
Addr pagePtr;
uint64_t init_param;
/** Port to physical memory used for writing object files into ram at
* boot.*/
PortProxy physProxy;
/** kernel symbol table */
SymbolTable *kernelSymtab;
/** Object pointer for the kernel code */
ObjectFile *kernel;
/** Beginning of kernel code */
Addr kernelStart;
/** End of kernel code */
Addr kernelEnd;
/** Entry point in the kernel to start at */
Addr kernelEntry;
/** Mask that should be anded for binary/symbol loading.
* This allows one two different OS requirements for the same ISA to be
* handled. Some OSes are compiled for a virtual address and need to be
* loaded into physical memory that starts at address 0, while other
* bare metal tools generate images that start at address 0.
*/
Addr loadAddrMask;
/** Offset that should be used for binary/symbol loading.
* This further allows more flexibility than the loadAddrMask allows alone
* in loading kernels and similar. The loadAddrOffset is applied after the
* loadAddrMask.
*/
Addr loadAddrOffset;
public:
/**
* Get a pointer to the Kernel Virtual Machine (KVM) SimObject,
* if present.
*/
KvmVM* getKvmVM() {
return kvmVM;
}
/** Get a pointer to access the physical memory of the system */
PhysicalMemory& getPhysMem() { return physmem; }
/** Amount of physical memory that is still free */
Addr freeMemSize() const;
/** Amount of physical memory that exists */
Addr memSize() const;
/**
* Check if a physical address is within a range of a memory that
* is part of the global address map.
*
* @param addr A physical address
* @return Whether the address corresponds to a memory
*/
bool isMemAddr(Addr addr) const;
/**
* Get the architecture.
*/
Arch getArch() const { return Arch::TheISA; }
/**
* Get the page bytes for the ISA.
*/
Addr getPageBytes() const { return TheISA::PageBytes; }
/**
* Get the number of bits worth of in-page address for the ISA.
*/
Addr getPageShift() const { return TheISA::PageShift; }
/**
* The thermal model used for this system (if any).
*/
ThermalModel * getThermalModel() const { return thermalModel; }
protected:
KvmVM *const kvmVM;
PhysicalMemory physmem;
Enums::MemoryMode memoryMode;
const unsigned int _cacheLineSize;
uint64_t workItemsBegin;
uint64_t workItemsEnd;
uint32_t numWorkIds;
std::vector<bool> activeCpus;
/** This array is a per-system list of all devices capable of issuing a
* memory system request and an associated string for each master id.
* It's used to uniquely id any master in the system by name for things
* like cache statistics.
*/
std::vector<std::string> masterIds;
ThermalModel * thermalModel;
public:
/** Request an id used to create a request object in the system. All objects
* that intend to issues requests into the memory system must request an id
* in the init() phase of startup. All master ids must be fixed by the
* regStats() phase that immediately precedes it. This allows objects in
* the memory system to understand how many masters may exist and
* appropriately name the bins of their per-master stats before the stats
* are finalized
*/
MasterID getMasterId(std::string req_name);
/** Get the name of an object for a given request id.
*/
std::string getMasterName(MasterID master_id);
/** Get the number of masters registered in the system */
MasterID maxMasters()
{
return masterIds.size();
}
void regStats() override;
/**
* Called by pseudo_inst to track the number of work items started by this
* system.
*/
uint64_t
incWorkItemsBegin()
{
return ++workItemsBegin;
}
/**
* Called by pseudo_inst to track the number of work items completed by
* this system.
*/
uint64_t
incWorkItemsEnd()
{
return ++workItemsEnd;
}
/**
* Called by pseudo_inst to mark the cpus actively executing work items.
* Returns the total number of cpus that have executed work item begin or
* ends.
*/
int
markWorkItem(int index)
{
int count = 0;
assert(index < activeCpus.size());
activeCpus[index] = true;
for (std::vector<bool>::iterator i = activeCpus.begin();
i < activeCpus.end(); i++) {
if (*i) count++;
}
return count;
}
inline void workItemBegin(uint32_t tid, uint32_t workid)
{
std::pair<uint32_t,uint32_t> p(tid, workid);
lastWorkItemStarted[p] = curTick();
}
void workItemEnd(uint32_t tid, uint32_t workid);
/**
* Fix up an address used to match PCs for hooking simulator
* events on to target function executions. See comment in
* system.cc for details.
*/
virtual Addr fixFuncEventAddr(Addr addr)
{
panic("Base fixFuncEventAddr not implemented.\n");
}
/** @{ */
/**
* Add a function-based event to the given function, to be looked
* up in the specified symbol table.
*
* The ...OrPanic flavor of the method causes the simulator to
* panic if the symbol can't be found.
*
* @param symtab Symbol table to use for look up.
* @param lbl Function to hook the event to.
* @param desc Description to be passed to the event.
* @param args Arguments to be forwarded to the event constructor.
*/
template <class T, typename... Args>
T *addFuncEvent(const SymbolTable *symtab, const char *lbl,
const std::string &desc, Args... args)
{
Addr addr M5_VAR_USED = 0; // initialize only to avoid compiler warning
#if THE_ISA != NULL_ISA
if (symtab->findAddress(lbl, addr)) {
T *ev = new T(&pcEventQueue, desc, fixFuncEventAddr(addr),
std::forward<Args>(args)...);
return ev;
}
#endif
return NULL;
}
template <class T>
T *addFuncEvent(const SymbolTable *symtab, const char *lbl)
{
return addFuncEvent<T>(symtab, lbl, lbl);
}
template <class T, typename... Args>
T *addFuncEventOrPanic(const SymbolTable *symtab, const char *lbl,
Args... args)
{
T *e(addFuncEvent<T>(symtab, lbl, std::forward<Args>(args)...));
if (!e)
panic("Failed to find symbol '%s'", lbl);
return e;
}
/** @} */
/** @{ */
/**
* Add a function-based event to a kernel symbol.
*
* These functions work like their addFuncEvent() and
* addFuncEventOrPanic() counterparts. The only difference is that
* they automatically use the kernel symbol table. All arguments
* are forwarded to the underlying method.
*
* @see addFuncEvent()
* @see addFuncEventOrPanic()
*
* @param lbl Function to hook the event to.
* @param args Arguments to be passed to addFuncEvent
*/
template <class T, typename... Args>
T *addKernelFuncEvent(const char *lbl, Args... args)
{
return addFuncEvent<T>(kernelSymtab, lbl,
std::forward<Args>(args)...);
}
template <class T, typename... Args>
T *addKernelFuncEventOrPanic(const char *lbl, Args... args)
{
T *e(addFuncEvent<T>(kernelSymtab, lbl,
std::forward<Args>(args)...));
if (!e)
panic("Failed to find kernel symbol '%s'", lbl);
return e;
}
/** @} */
public:
std::vector<BaseRemoteGDB *> remoteGDB;
std::vector<GDBListener *> gdbListen;
bool breakpoint();
public:
typedef SystemParams Params;
protected:
Params *_params;
public:
System(Params *p);
~System();
void initState() override;
const Params *params() const { return (const Params *)_params; }
public:
/**
* Returns the address the kernel starts at.
* @return address the kernel starts at
*/
Addr getKernelStart() const { return kernelStart; }
/**
* Returns the address the kernel ends at.
* @return address the kernel ends at
*/
Addr getKernelEnd() const { return kernelEnd; }
/**
* Returns the address the entry point to the kernel code.
* @return entry point of the kernel code
*/
Addr getKernelEntry() const { return kernelEntry; }
/// Allocate npages contiguous unused physical pages
/// @return Starting address of first page
Addr allocPhysPages(int npages);
ContextID registerThreadContext(ThreadContext *tc,
ContextID assigned = InvalidContextID);
void replaceThreadContext(ThreadContext *tc, ContextID context_id);
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
void drainResume() override;
public:
Counter totalNumInsts;
EventQueue instEventQueue;
std::map<std::pair<uint32_t,uint32_t>, Tick> lastWorkItemStarted;
std::map<uint32_t, Stats::Histogram*> workItemStats;
////////////////////////////////////////////
//
// STATIC GLOBAL SYSTEM LIST
//
////////////////////////////////////////////
static std::vector<System *> systemList;
static int numSystemsRunning;
static void printSystems();
FutexMap futexMap;
static const int maxPID = 32768;
/** Process set to track which PIDs have already been allocated */
std::set<int> PIDs;
// By convention, all signals are owned by the receiving process. The
// receiver will delete the signal upon reception.
std::list<BasicSignal> signalList;
protected:
/**
* If needed, serialize additional symbol table entries for a
* specific subclass of this system. Currently this is used by
* Alpha and MIPS.
*
* @param os stream to serialize to
*/
virtual void serializeSymtab(CheckpointOut &os) const {}
/**
* If needed, unserialize additional symbol table entries for a
* specific subclass of this system.
*
* @param cp checkpoint to unserialize from
* @param section relevant section in the checkpoint
*/
virtual void unserializeSymtab(CheckpointIn &cp) {}
};
void printSystems();
#endif // __SYSTEM_HH__