No description
Find a file
Steve Reinhardt 29e34a739b Move main control from C++ into Python.
User script now invokes initialization and
simulation loop after building configuration.
These functions are exported from C++ to Python
using SWIG.

SConstruct:
    Set up SWIG builder & scanner.
    Set up symlinking of source files into build directory
    (by not disabling the default behavior).
configs/test/test.py:
    Rewrite to use new script-driven interface.
    Include a sample option.
src/SConscript:
    Set up symlinking of source files into build directory
    (by not disabling the default behavior).
    Add SWIG-generated main_wrap.cc to source list.
src/arch/SConscript:
    Set up symlinking of source files into build directory
    (by not disabling the default behavior).
src/arch/alpha/ev5.cc:
src/arch/alpha/isa/decoder.isa:
src/cpu/o3/alpha_cpu_impl.hh:
src/cpu/trace/opt_cpu.cc:
src/cpu/trace/trace_cpu.cc:
src/sim/pseudo_inst.cc:
src/sim/root.cc:
src/sim/serialize.cc:
src/sim/syscall_emul.cc:
    SimExit() is now exitSimLoop().
src/cpu/base.cc:
    SimExitEvent is now SimLoopExitEvent
src/python/SConscript:
    Add SWIG build command for main.i.
    Use python/m5 in build dir as source for zip archive...
    easy now with file duplication enabled.
src/python/m5/__init__.py:
    - Move copyright notice back to C++ so we can print
    it right away, even for interactive sessions.
    - Get rid of argument parsing code; just provide default
    option descriptors for user script to call optparse with.
    - Don't clutter m5 namespace by sucking in all of m5.config
    and m5.objects.
    - Move instantiate() function here from config.py.
src/python/m5/config.py:
    - Move instantiate() function to __init__.py.
    - Param.Foo deferred type lookups must use m5.objects
    namespace now (not m5).
src/python/m5/objects/AlphaConsole.py:
src/python/m5/objects/AlphaFullCPU.py:
src/python/m5/objects/AlphaTLB.py:
src/python/m5/objects/BadDevice.py:
src/python/m5/objects/BaseCPU.py:
src/python/m5/objects/BaseCache.py:
src/python/m5/objects/Bridge.py:
src/python/m5/objects/Bus.py:
src/python/m5/objects/CoherenceProtocol.py:
src/python/m5/objects/Device.py:
src/python/m5/objects/DiskImage.py:
src/python/m5/objects/Ethernet.py:
src/python/m5/objects/Ide.py:
src/python/m5/objects/IntrControl.py:
src/python/m5/objects/MemObject.py:
src/python/m5/objects/MemTest.py:
src/python/m5/objects/Pci.py:
src/python/m5/objects/PhysicalMemory.py:
src/python/m5/objects/Platform.py:
src/python/m5/objects/Process.py:
src/python/m5/objects/Repl.py:
src/python/m5/objects/Root.py:
src/python/m5/objects/SimConsole.py:
src/python/m5/objects/SimpleDisk.py:
src/python/m5/objects/System.py:
src/python/m5/objects/Tsunami.py:
src/python/m5/objects/Uart.py:
    Fix up imports (m5 namespace no longer includes m5.config).
src/sim/eventq.cc:
src/sim/eventq.hh:
    Support for Python-called simulate() function:
    - Use IsExitEvent flag to signal events that want
    to exit the simulation loop gracefully (instead of
    calling exit() to terminate the process).
    - Modify interface to hand exit event object back to
    caller so it can be inspected for cause.
src/sim/host.hh:
    Add MaxTick constant.
src/sim/main.cc:
    Move copyright notice back to C++ so we can print
    it right away, even for interactive sessions.
    Use PYTHONPATH environment var to set module path
    (instead of clunky code injection method).
    Move main control from here into Python:
    - Separate initialization code and simulation loop
    into separate functions callable from Python.
    - Make Python interpreter invocation more pure (more
    like directly invoking interpreter).
    Add -i and -p flags (only options on binary itself;
    other options processed by Python).
    Import readline package when using interactive mode.
src/sim/sim_events.cc:
    SimExitEvent is now SimLoopExitEvent, and uses
    IsSimExit flag to terminate loop (instead of
    exiting simulator process).
src/sim/sim_events.hh:
    SimExitEvent is now SimLoopExitEvent, and uses
    IsSimExit flag to terminate loop (instead of
    exiting simulator process).
    Get rid of a few unused constructors.
src/sim/sim_exit.hh:
    SimExit() is now exitSimLoop().
    Get rid of unused functions.
    Add comments.

--HG--
extra : convert_revision : 280b0d671516b25545a6f24cefa64a68319ff3d4
2006-06-09 23:01:31 -04:00
build_opts split off fullsystem and se iprs into two functions to remove lots of #ifs 2006-05-29 16:53:47 -04:00
configs Move main control from C++ into Python. 2006-06-09 23:01:31 -04:00
docs Updated Authors from bk prs info 2006-05-31 19:26:56 -04:00
ext New directory structure: 2006-05-22 14:29:33 -04:00
src Move main control from C++ into Python. 2006-06-09 23:01:31 -04:00
util Updated Authors from bk prs info 2006-05-31 19:26:56 -04:00
LICENSE Remove authors from copyright. 2006-05-28 23:26:15 -04:00
README More documentation for 1.1 release. 2005-10-06 13:59:05 -04:00
RELEASE_NOTES More documentation for 1.1 release. 2005-10-06 13:59:05 -04:00
SConstruct Move main control from C++ into Python. 2006-06-09 23:01:31 -04:00

This is release m5_1.1 of the M5 simulator.

This file contains brief "getting started" instructions.  For more
information, see http://m5.eecs.umich.edu.  If you have questions,
please send mail to m5sim-users@lists.sourceforge.net.

WHAT'S INCLUDED (AND NOT)
-------------------------

The basic source release includes these subdirectories:
 - m5: the simulator itself
 - m5-test: regression tests
 - ext: less-common external packages needed to build m5
 - alpha-system: source for Alpha console and PALcode

To run full-system simulations, you will need compiled console,
PALcode, and kernel binaries and one or more disk images.  These files
are collected in a separate archive, m5_system_1.1.tar.bz2.  This file
is included on the CD release, or you can download it separately from
Sourceforge.

M5 supports Linux 2.4/2.6, FreeBSD, and the proprietary Compaq/HP
Tru64 version of Unix. We are able to distribute Linux and FreeBSD
bootdisks, but we are unable to distribute bootable disk images of
Tru64 Unix. If you have a Tru64 license and are interested in
obtaining disk images, contact us at m5-dev@eecs.umich.edu.

The CD release includes a few extra goodies, such as a tar file
containing doxygen-generated HTML documentation (html-docs.tar.gz), a
set of Linux source patches (linux_m5-2.6.8.1.diff), and the scons
program needed to build M5.  If you do not have the CD, the same HTML
documentation is available online at http://m5.eecs.umich.edu/docs,
the Linux source patches are available at
http://m5.eecs.umich.edu/dist/linux_m5-2.6.8.1.diff, and the scons
program is available from http://www.scons.org.

WHAT'S NEEDED
-------------
- GCC version 3.3 or newer
- Python 2.3 or newer
- SCons 0.96.1 or newer (see http://www.scons.org)

WHAT'S RECOMMENDED
------------------
- MySQL (for statistics complex statistics storage/retrieval)
- Python-MysqlDB (for statistics analysis) 

GETTING STARTED
---------------

There are two different build targets and three optimizations levels:

Target:
-------
ALPHA_SE - Syscall emulation simulation
ALPHA_FS - Full system simulation

Optimization:
-------------
m5.debug - debug version of the code with tracing and without optimization
m5.opt   - optimized version of code with tracing
m5.fast  - optimized version of the code without tracing and asserts

Different targets are built in different subdirectories of m5/build.
Binaries with the same target but different optimization levels share
the same directory.  Note that you can build m5 in any directory you
choose;p just configure the target directory using the 'mkbuilddir'
script in m5/build.

The following steps will build and test the simulator.  The variable
"$top" refers to the top directory where you've unpacked the files,
i.e., the one containing the m5, m5-test, and ext directories.  If you
have a multiprocessor system, you should give scons a "-j N" argument (like
make) to run N jobs in parallel.

To build and test the syscall-emulation simulator:

	cd $top/m5/build
	scons ALPHA_SE/test/opt/quick

This process takes under 10 minutes on a dual 3GHz Xeon system (using
the '-j 4' option).

To build and test the full-system simulator:

1. Unpack the full-system binaries from m5_system_1.1.tar.bz2.  (See
   above for directions on obtaining this file if you don't have it.)
   This package includes disk images and kernel, palcode, and console
   binaries for Linux and FreeBSD.
2. Edit the SYSTEMDIR search path in $top/m5-test/SysPaths.py to
   include the path to your local copy of the binaries.
3. In $top/m5/build, run "scons ALPHA_FS/test/opt/quick".

This process also takes under 10 minutes on a dual 3GHz Xeon system
(again using the '-j 4' option).