gem5/cpu/memtest/memtest.cc
Erik Hallnor 26ababf2f2 Probe is now in. You currently can't probe uncacheable (of course it doesn't make much sense either.
Also, probe doesn't currently support compressed data, but will as soon as I encapsulate the calls more.

cpu/memtest/memtest.cc:
    Change memtest to not do probes on uncacheables.

--HG--
extra : convert_revision : 28ca4f793562e55da75e8b7fc3852bb5b1328ea9
2003-10-22 00:22:25 -04:00

339 lines
10 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// FIX ME: make trackBlkAddr use blocksize from actual cache, not hard coded
#include <string>
#include <sstream>
#include <iomanip>
#include <vector>
#include "base/misc.hh"
#include "base/statistics.hh"
#include "cpu/memtest/memtest.hh"
#include "mem/cache/base_cache.hh"
#include "mem/functional_mem/main_memory.hh"
#include "sim/builder.hh"
#include "sim/sim_events.hh"
#include "sim/sim_stats.hh"
using namespace std;
MemTest::MemTest(const string &name,
MemInterface *_cache_interface,
FunctionalMemory *main_mem,
FunctionalMemory *check_mem,
unsigned _memorySize,
unsigned _percentReads,
unsigned _percentUncacheable,
unsigned _progressInterval,
Addr _traceAddr,
Counter max_loads_any_thread,
Counter max_loads_all_threads)
: BaseCPU(name, 1, 0, 0, max_loads_any_thread, max_loads_all_threads),
tickEvent(this),
cacheInterface(_cache_interface),
mainMem(main_mem),
checkMem(check_mem),
size(_memorySize),
percentReads(_percentReads),
percentUncacheable(_percentUncacheable),
progressInterval(_progressInterval),
nextProgressMessage(_progressInterval)
{
vector<string> cmd;
cmd.push_back("/bin/ls");
vector<string> null_vec;
xc = new ExecContext(this ,0,mainMem,0);
blockSize = cacheInterface->getBlockSize();
blockAddrMask = blockSize - 1;
traceBlockAddr = blockAddr(_traceAddr);
//setup data storage with interesting values
uint8_t *data1 = new uint8_t[size];
uint8_t *data2 = new uint8_t[size];
uint8_t *data3 = new uint8_t[size];
memset(data1, 1, size);
memset(data2, 2, size);
memset(data3, 3, size);
curTick = 0;
baseAddr1 = 0x100000;
baseAddr2 = 0x400000;
uncacheAddr = 0x800000;
// set up intial memory contents here
mainMem->prot_write(baseAddr1, data1, size);
checkMem->prot_write(baseAddr1, data1, size);
mainMem->prot_write(baseAddr2, data2, size);
checkMem->prot_write(baseAddr2, data2, size);
mainMem->prot_write(uncacheAddr, data3, size);
checkMem->prot_write(uncacheAddr, data3, size);
delete [] data1;
delete [] data2;
delete [] data3;
// set up counters
noResponseCycles = 0;
numReads = 0;
numWrites = 0;
tickEvent.schedule(0);
}
static void
printData(ostream &os, uint8_t *data, int nbytes)
{
os << hex << setfill('0');
// assume little-endian: print bytes from highest address to lowest
for (uint8_t *dp = data + nbytes - 1; dp >= data; --dp) {
os << setw(2) << (unsigned)*dp;
}
os << dec;
}
void
MemTest::completeRequest(MemReqPtr req, uint8_t *data)
{
switch (req->cmd) {
case Read:
if (memcmp(req->data, data, req->size) != 0) {
cerr << name() << ": on read of 0x" << hex << req->paddr
<< " @ cycle " << dec << curTick
<< ", cache returns 0x";
printData(cerr, req->data, req->size);
cerr << ", expected 0x";
printData(cerr, data, req->size);
cerr << endl;
fatal("");
}
numReads++;
if (numReads.value() == nextProgressMessage) {
cerr << name() << ": completed " << numReads.value()
<< " read accesses @ " << curTick << endl;
nextProgressMessage += progressInterval;
}
comLoadEventQueue[0]->serviceEvents(numReads.value());
break;
case Write:
numWrites++;
break;
default:
panic("invalid command");
}
if (blockAddr(req->paddr) == traceBlockAddr) {
cerr << name() << ": completed "
<< (req->cmd.isWrite() ? "write" : "read") << " access of "
<< req->size << " bytes at address 0x"
<< hex << req->paddr << ", value = 0x";
printData(cerr, req->data, req->size);
cerr << " @ cycle " << dec << curTick;
cerr << endl;
}
noResponseCycles = 0;
delete [] data;
}
void
MemTest::regStats()
{
using namespace Statistics;
numReads
.name(name() + ".num_reads")
.desc("number of read accesses completed")
;
numWrites
.name(name() + ".num_writes")
.desc("number of write accesses completed")
;
numCopies
.name(name() + ".num_copies")
.desc("number of copy accesses completed")
;
}
void
MemTest::tick()
{
if (!tickEvent.scheduled())
tickEvent.schedule(curTick + 1);
if (++noResponseCycles >= 5000) {
cerr << name() << ": deadlocked at cycle " << curTick << endl;
fatal("");
}
if (cacheInterface->isBlocked()) {
return;
}
//make new request
unsigned cmd = rand() % 100;
unsigned offset1 = random() % size;
unsigned base = random() % 2;
uint64_t data = random();
unsigned access_size = random() % 4;
unsigned cacheable = rand() % 100;
MemReqPtr req = new MemReq();
if (cacheable < percentUncacheable) {
req->flags |= UNCACHEABLE;
req->paddr = uncacheAddr + offset1;
} else {
req->paddr = ((base) ? baseAddr1 : baseAddr2) + offset1;
}
bool probe = (rand() % 2 == 1) && !req->isUncacheable();
req->size = 1 << access_size;
req->data = new uint8_t[req->size];
req->paddr &= ~(req->size - 1);
req->time = curTick;
req->xc = xc;
if (cmd < percentReads) {
// read
req->cmd = Read;
uint8_t *result = new uint8_t[8];
checkMem->access(Read, req->paddr, result, req->size);
if (blockAddr(req->paddr) == traceBlockAddr) {
cerr << name() << ": initiating read "
<< ((probe)?"probe of ":"access of ")
<< req->size << " bytes from addr 0x"
<< hex << req->paddr << " at cycle "
<< dec << curTick << endl;
}
if (probe) {
cacheInterface->probeAndUpdate(req);
completeRequest(req, result);
} else {
req->completionEvent = new MemCompleteEvent(req, result, this);
cacheInterface->access(req);
}
} else {
// write
req->cmd = Write;
memcpy(req->data, &data, req->size);
checkMem->access(Write, req->paddr, req->data, req->size);
if (blockAddr(req->paddr) == traceBlockAddr) {
cerr << name() << ": initiating write "
<< ((probe)?"probe of ":"access of ")
<< req->size << " bytes (value = 0x";
printData(cerr, req->data, req->size);
cerr << ") to addr 0x"
<< hex << req->paddr << " at cycle "
<< dec << curTick << endl;
}
if (probe) {
cacheInterface->probeAndUpdate(req);
completeRequest(req, NULL);
} else {
req->completionEvent = new MemCompleteEvent(req, NULL, this);
cacheInterface->access(req);
}
}
}
void
MemCompleteEvent::process()
{
tester->completeRequest(req, data);
delete this;
}
const char *
MemCompleteEvent::description()
{
return "memory access completion";
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(MemTest)
SimObjectParam<BaseCache *> cache;
SimObjectParam<FunctionalMemory *> main_mem;
SimObjectParam<FunctionalMemory *> check_mem;
Param<unsigned> memory_size;
Param<unsigned> percent_reads;
Param<unsigned> percent_uncacheable;
Param<unsigned> progress_interval;
Param<Addr> trace_addr;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
END_DECLARE_SIM_OBJECT_PARAMS(MemTest)
BEGIN_INIT_SIM_OBJECT_PARAMS(MemTest)
INIT_PARAM(cache, "L1 cache"),
INIT_PARAM(main_mem, "hierarchical memory"),
INIT_PARAM(check_mem, "check memory"),
INIT_PARAM_DFLT(memory_size, "memory size", 65536),
INIT_PARAM_DFLT(percent_reads, "target read percentage", 65),
INIT_PARAM_DFLT(percent_uncacheable, "target uncacheable percentage", 10),
INIT_PARAM_DFLT(progress_interval,
"progress report interval (in accesses)", 1000000),
INIT_PARAM_DFLT(trace_addr, "address to trace", 0),
INIT_PARAM_DFLT(max_loads_any_thread,
"terminate when any thread reaches this load count",
0),
INIT_PARAM_DFLT(max_loads_all_threads,
"terminate when all threads have reached this load count",
0)
END_INIT_SIM_OBJECT_PARAMS(MemTest)
CREATE_SIM_OBJECT(MemTest)
{
return new MemTest(getInstanceName(), cache->getInterface(), main_mem,
check_mem, memory_size, percent_reads,
percent_uncacheable, progress_interval,
trace_addr, max_loads_any_thread,
max_loads_all_threads);
}
REGISTER_SIM_OBJECT("MemTest", MemTest)