gem5/arch/sparc/regfile.hh
Gabe Black bb4c2fba25 Small touchups to SPARC
arch/sparc/regfile.hh:
    Added debug output to the setAltGlobals function.

--HG--
extra : convert_revision : b5ed3ff6d6f30e840c2488d846658dadedb59869
2006-04-06 15:14:08 -04:00

803 lines
26 KiB
C++

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __ARCH_SPARC_REGFILE_HH__
#define __ARCH_SPARC_REGFILE_HH__
#include "arch/sparc/faults.hh"
#include "base/trace.hh"
#include "sim/byteswap.hh"
#include "sim/host.hh"
class Checkpoint;
namespace SparcISA
{
typedef uint8_t RegIndex;
// MAXTL - maximum trap level
const int MaxTL = 4;
// NWINDOWS - number of register windows, can be 3 to 32
const int NWindows = 6;
class IntRegFile
{
protected:
static const int FrameOffsetBits = 3;
static const int FrameNumBits = 2;
static const int RegsPerFrame = 1 << FrameOffsetBits;
static const int FrameNumMask =
(FrameNumBits == sizeof(int)) ?
(unsigned int)(-1) :
(1 << FrameNumBits) - 1;
static const int FrameOffsetMask =
(FrameOffsetBits == sizeof(int)) ?
(unsigned int)(-1) :
(1 << FrameOffsetBits) - 1;
IntReg regGlobals[RegsPerFrame];
IntReg altGlobals[RegsPerFrame];
IntReg regSegments[2 * NWindows][RegsPerFrame];
enum regFrame {Globals, Outputs, Locals, Inputs, NumFrames};
IntReg * regView[NumFrames];
static const int RegGlobalOffset = 0;
static const int AltGlobalOffset = 8;
static const int FrameOffset = 16;
int offset[NumFrames];
public:
int flattenIndex(int reg)
{
int flatIndex = offset[reg >> FrameOffsetBits]
| (reg & FrameOffsetMask);
DPRINTF(Sparc, "Flattened index %d into %d.\n", reg, flatIndex);
return flatIndex;
}
void clear()
{
bzero(regGlobals, sizeof(regGlobals));
bzero(altGlobals, sizeof(altGlobals));
for(int x = 0; x < 2 * NWindows; x++)
bzero(regSegments[x], sizeof(regSegments[x]));
}
IntRegFile()
{
offset[Globals] = 0;
regView[Globals] = regGlobals;
setCWP(0);
clear();
}
IntReg readReg(int intReg)
{
IntReg val =
regView[intReg >> FrameOffsetBits][intReg & FrameOffsetMask];
DPRINTF(Sparc, "Read register %d = 0x%x\n", intReg, val);
return val;
}
Fault setReg(int intReg, const IntReg &val)
{
if(intReg)
DPRINTF(Sparc, "Wrote register %d = 0x%x\n", intReg, val);
regView[intReg >> FrameOffsetBits][intReg & FrameOffsetMask] = val;
return NoFault;
}
//This doesn't effect the actual CWP register.
//It's purpose is to adjust the view of the register file
//to what it would be if CWP = cwp.
void setCWP(int cwp)
{
int index = ((NWindows - cwp) % NWindows) * 2;
offset[Outputs] = FrameOffset + (index * RegsPerFrame);
offset[Locals] = FrameOffset + ((index+1) * RegsPerFrame);
offset[Inputs] = FrameOffset +
(((index+2) % (NWindows * 2)) * RegsPerFrame);
regView[Outputs] = regSegments[index];
regView[Locals] = regSegments[index+1];
regView[Inputs] = regSegments[(index+2) % (NWindows * 2)];
DPRINTF(Sparc, "Changed the CWP value to %d\n", cwp);
}
void setAltGlobals(bool useAlt)
{
DPRINTF(Sparc, "Now using %s globals",
useAlt ? "alternate" : "regular");
regView[Globals] = useAlt ? altGlobals : regGlobals;
offset[Globals] = useAlt ? AltGlobalOffset : RegGlobalOffset;
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
typedef float float32_t;
typedef double float64_t;
//FIXME long double refers to a 10 byte float, rather than a
//16 byte float as required. This data type may have to be emulated.
typedef double float128_t;
class FloatRegFile
{
public:
static const int SingleWidth = 32;
static const int DoubleWidth = 64;
static const int QuadWidth = 128;
protected:
//Since the floating point registers overlap each other,
//A generic storage space is used. The float to be returned is
//pulled from the appropriate section of this region.
char regSpace[SingleWidth / 8 * NumFloatRegs];
public:
void clear()
{
bzero(regSpace, sizeof(regSpace));
}
FloatReg readReg(int floatReg, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
float32_t result32;
memcpy(&result32, regSpace + 4 * floatReg, width);
return htog(result32);
case DoubleWidth:
float64_t result64;
memcpy(&result64, regSpace + 4 * floatReg, width);
return htog(result64);
case QuadWidth:
float128_t result128;
memcpy(&result128, regSpace + 4 * floatReg, width);
return htog(result128);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
}
FloatRegBits readRegBits(int floatReg, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32;
memcpy(&result32, regSpace + 4 * floatReg, width);
return htog(result32);
case DoubleWidth:
uint64_t result64;
memcpy(&result64, regSpace + 4 * floatReg, width);
return htog(result64);
case QuadWidth:
uint64_t result128;
memcpy(&result128, regSpace + 4 * floatReg, width);
return htog(result128);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
}
Fault setReg(int floatReg, const FloatReg &val, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32 = gtoh((uint32_t)val);
memcpy(regSpace + 4 * floatReg, &result32, width);
case DoubleWidth:
uint64_t result64 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result64, width);
case QuadWidth:
uint64_t result128 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result128, width);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
return NoFault;
}
Fault setRegBits(int floatReg, const FloatRegBits &val, int width)
{
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width)
{
case SingleWidth:
uint32_t result32 = gtoh((uint32_t)val);
memcpy(regSpace + 4 * floatReg, &result32, width);
case DoubleWidth:
uint64_t result64 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result64, width);
case QuadWidth:
uint64_t result128 = gtoh((uint64_t)val);
memcpy(regSpace + 4 * floatReg, &result128, width);
default:
panic("Attempted to read a %d bit floating point register!", width);
}
return NoFault;
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
enum MiscRegIndex
{
MISCREG_PSTATE,
MISCREG_PSTATE_AG,
MISCREG_PSTATE_IE,
MISCREG_PSTATE_PRIV,
MISCREG_PSTATE_AM,
MISCREG_PSTATE_PEF,
MISCREG_PSTATE_RED,
MISCREG_PSTATE_MM,
MISCREG_PSTATE_TLE,
MISCREG_PSTATE_CLE,
MISCREG_TBA,
MISCREG_Y,
MISCREG_Y_VALUE,
MISCREG_PIL,
MISCREG_CWP,
MISCREG_TT_BASE,
MISCREG_TT_END = MISCREG_TT_BASE + MaxTL,
MISCREG_CCR,
MISCREG_CCR_ICC,
MISCREG_CCR_ICC_C,
MISCREG_CCR_ICC_V,
MISCREG_CCR_ICC_Z,
MISCREG_CCR_ICC_N,
MISCREG_CCR_XCC,
MISCREG_CCR_XCC_C,
MISCREG_CCR_XCC_V,
MISCREG_CCR_XCC_Z,
MISCREG_CCR_XCC_N,
MISCREG_ASI,
MISCREG_TL,
MISCREG_TPC_BASE,
MISCREG_TPC_END = MISCREG_TPC_BASE + MaxTL,
MISCREG_TNPC_BASE,
MISCREG_TNPC_END = MISCREG_TNPC_BASE + MaxTL,
MISCREG_TSTATE_BASE,
MISCREG_TSTATE_END = MISCREG_TSTATE_BASE + MaxTL,
MISCREG_TSTATE_CWP_BASE,
MISCREG_TSTATE_CWP_END = MISCREG_TSTATE_CWP_BASE + MaxTL,
MISCREG_TSTATE_PSTATE_BASE,
MISCREG_TSTATE_PSTATE_END = MISCREG_TSTATE_PSTATE_BASE + MaxTL,
MISCREG_TSTATE_ASI_BASE,
MISCREG_TSTATE_ASI_END = MISCREG_TSTATE_ASI_BASE + MaxTL,
MISCREG_TSTATE_CCR_BASE,
MISCREG_TSTATE_CCR_END = MISCREG_TSTATE_CCR_BASE + MaxTL,
MISCREG_TICK,
MISCREG_TICK_COUNTER,
MISCREG_TICK_NPT,
MISCREG_CANSAVE,
MISCREG_CANRESTORE,
MISCREG_OTHERWIN,
MISCREG_CLEANWIN,
MISCREG_WSTATE,
MISCREG_WSTATE_NORMAL,
MISCREG_WSTATE_OTHER,
MISCREG_VER,
MISCREG_VER_MAXWIN,
MISCREG_VER_MAXTL,
MISCREG_VER_MASK,
MISCREG_VER_IMPL,
MISCREG_VER_MANUF,
MISCREG_FSR,
MISCREG_FSR_CEXC,
MISCREG_FSR_CEXC_NXC,
MISCREG_FSR_CEXC_DZC,
MISCREG_FSR_CEXC_UFC,
MISCREG_FSR_CEXC_OFC,
MISCREG_FSR_CEXC_NVC,
MISCREG_FSR_AEXC,
MISCREG_FSR_AEXC_NXC,
MISCREG_FSR_AEXC_DZC,
MISCREG_FSR_AEXC_UFC,
MISCREG_FSR_AEXC_OFC,
MISCREG_FSR_AEXC_NVC,
MISCREG_FSR_FCC0,
MISCREG_FSR_QNE,
MISCREG_FSR_FTT,
MISCREG_FSR_VER,
MISCREG_FSR_NS,
MISCREG_FSR_TEM,
MISCREG_FSR_TEM_NXM,
MISCREG_FSR_TEM_DZM,
MISCREG_FSR_TEM_UFM,
MISCREG_FSR_TEM_OFM,
MISCREG_FSR_TEM_NVM,
MISCREG_FSR_RD,
MISCREG_FSR_FCC1,
MISCREG_FSR_FCC2,
MISCREG_FSR_FCC3,
MISCREG_FPRS,
MISCREG_FPRS_DL,
MISCREG_FPRS_DU,
MISCREG_FPRS_FEF,
numMiscRegs
};
// The control registers, broken out into fields
class MiscRegFile
{
private:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
};
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
uint64_t :32; // reserved bits
} yFields;
};
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured
// on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields;
};
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields;
};
} ccrFields;
};
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from
// previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from
// previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
};
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
};
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
};
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
};
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexcFields;
};
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexcFields;
};
uint64_t fcc0:2; // Floating-Point condtion codes
uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields;
};
uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
uint64_t :26; // Reserved bits
} fsrFields;
};
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
uint8_t dl:1; // Dirty lower
uint8_t du:1; // Dirty upper
uint8_t fef:1; // FPRS enable floating-Point
} fprsFields;
};
public:
void reset()
{
pstateFields.pef = 0; //No FPU
//pstateFields.pef = 1; //FPU
#if FULL_SYSTEM
//For SPARC, when a system is first started, there is a power
//on reset Trap which sets the processor into the following state.
//Bits that aren't set aren't defined on startup.
tl = MaxTL;
tt[tl] = PowerOnReset.trapType();
pstateFields.mm = 0; //Total Store Order
pstateFields.red = 1; //Enter RED_State
pstateFields.am = 0; //Address Masking is turned off
pstateFields.priv = 1; //Processor enters privileged mode
pstateFields.ie = 0; //Interrupts are disabled
pstateFields.ag = 1; //Globals are replaced with alternate globals
pstateFields.tle = 0; //Big Endian mode for traps
pstateFields.cle = 0; //Big Endian mode for non-traps
tickFields.npt = 1; //The TICK register is unreadable by
//non-priveleged software
#else
//This sets up the initial state of the processor for usermode processes
pstateFields.priv = 0; //Process runs in user mode
pstateFields.ie = 1; //Interrupts are enabled
fsrFields.rd = 0; //Round to nearest
fsrFields.tem = 0; //Floating point traps not enabled
fsrFields.ns = 0; //Non standard mode off
fsrFields.qne = 0; //Floating point queue is empty
fsrFields.aexc = 0; //No accrued exceptions
fsrFields.cexc = 0; //No current exceptions
//Register window management registers
otherwin = 0; //No windows contain info from other programs
canrestore = 0; //There are no windows to pop
cansave = MaxTL - 2; //All windows are available to save into
cleanwin = MaxTL;
#endif
}
MiscRegFile()
{
reset();
}
MiscReg readReg(int miscReg);
MiscReg readRegWithEffect(int miscReg, Fault &fault, ExecContext *xc);
Fault setReg(int miscReg, const MiscReg &val);
Fault setRegWithEffect(int miscReg,
const MiscReg &val, ExecContext * xc);
void serialize(std::ostream & os);
void unserialize(Checkpoint * cp, const std::string & section);
void copyMiscRegs(ExecContext * xc);
};
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
class RegFile
{
protected:
Addr pc; // Program Counter
Addr npc; // Next Program Counter
Addr nnpc;
public:
Addr readPC()
{
return pc;
}
void setPC(Addr val)
{
pc = val;
}
Addr readNextPC()
{
return npc;
}
void setNextPC(Addr val)
{
npc = val;
}
Addr readNextNPC()
{
return nnpc;
}
void setNextNPC(Addr val)
{
nnpc = val;
}
protected:
IntRegFile intRegFile; // integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
public:
void clear()
{
intRegFile.clear();
floatRegFile.clear();
}
int flattenIntIndex(int reg)
{
return intRegFile.flattenIndex(reg);
}
MiscReg readMiscReg(int miscReg)
{
return miscRegFile.readReg(miscReg);
}
MiscReg readMiscRegWithEffect(int miscReg,
Fault &fault, ExecContext *xc)
{
return miscRegFile.readRegWithEffect(miscReg, fault, xc);
}
Fault setMiscReg(int miscReg, const MiscReg &val)
{
return miscRegFile.setReg(miscReg, val);
}
Fault setMiscRegWithEffect(int miscReg, const MiscReg &val,
ExecContext * xc)
{
return miscRegFile.setRegWithEffect(miscReg, val, xc);
}
FloatReg readFloatReg(int floatReg, int width)
{
return floatRegFile.readReg(floatReg, width);
}
FloatReg readFloatReg(int floatReg)
{
//Use the "natural" width of a single float
return floatRegFile.readReg(floatReg, FloatRegFile::SingleWidth);
}
FloatRegBits readFloatRegBits(int floatReg, int width)
{
return floatRegFile.readRegBits(floatReg, width);
}
FloatRegBits readFloatRegBits(int floatReg)
{
//Use the "natural" width of a single float
return floatRegFile.readRegBits(floatReg,
FloatRegFile::SingleWidth);
}
Fault setFloatReg(int floatReg, const FloatReg &val, int width)
{
return floatRegFile.setReg(floatReg, val, width);
}
Fault setFloatReg(int floatReg, const FloatReg &val)
{
//Use the "natural" width of a single float
return setFloatReg(floatReg, val, FloatRegFile::SingleWidth);
}
Fault setFloatRegBits(int floatReg, const FloatRegBits &val, int width)
{
return floatRegFile.setRegBits(floatReg, val, width);
}
Fault setFloatRegBits(int floatReg, const FloatRegBits &val)
{
//Use the "natural" width of a single float
return floatRegFile.setRegBits(floatReg, val,
FloatRegFile::SingleWidth);
}
IntReg readIntReg(int intReg)
{
return intRegFile.readReg(intReg);
}
Fault setIntReg(int intReg, const IntReg &val)
{
return intRegFile.setReg(intReg, val);
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
public:
enum ContextParam
{
CONTEXT_CWP,
CONTEXT_GLOBALS
};
union ContextVal
{
MiscReg reg;
bool altGlobals;
};
void changeContext(ContextParam param, ContextVal val)
{
switch(param)
{
case CONTEXT_CWP:
intRegFile.setCWP(val.reg);
break;
case CONTEXT_GLOBALS:
intRegFile.setAltGlobals(val.altGlobals);
break;
default:
panic("Tried to set illegal context parameter in the SPARC regfile.\n");
}
}
};
void copyRegs(ExecContext *src, ExecContext *dest);
void copyMiscRegs(ExecContext *src, ExecContext *dest);
} // namespace SparcISA
#endif