gem5/src/sim/root.cc
Steve Reinhardt ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E%2C%20Ali%20Saidi%20%3CAli.Saidi%40ARM.com%3E) de366a16f1 sim: simulate with multiple threads and event queues
This patch adds support for simulating with multiple threads, each of
which operates on an event queue.  Each sim object specifies which eventq
is would like to be on.  A custom barrier implementation is being added
using which eventqs synchronize.

The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
   requests from the cpu. The requests are replied to immediately without
   any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
   system which are connected by an ethernet link.

We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.

Committed by: Nilay Vaish
2013-11-25 11:21:00 -06:00

183 lines
5.6 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
* Gabe Black
*/
#include "base/misc.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "debug/TimeSync.hh"
#include "sim/full_system.hh"
#include "sim/root.hh"
Root *Root::_root = NULL;
/*
* This function is called periodically by an event in M5 and ensures that
* at least as much real time has passed between invocations as simulated time.
* If not, the function either sleeps, or if the difference is small enough
* spin waits.
*/
void
Root::timeSync()
{
Time cur_time, diff, period = timeSyncPeriod();
do {
cur_time.setTimer();
diff = cur_time - lastTime;
Time remainder = period - diff;
if (diff < period && remainder > _spinThreshold) {
DPRINTF(TimeSync, "Sleeping to sync with real time.\n");
// Sleep until the end of the period, or until a signal.
sleep(remainder);
// Refresh the current time.
cur_time.setTimer();
}
} while (diff < period);
lastTime = cur_time;
schedule(&syncEvent, curTick() + _periodTick);
}
void
Root::timeSyncEnable(bool en)
{
if (en == _enabled)
return;
_enabled = en;
if (_enabled) {
// Get event going.
Tick periods = ((curTick() + _periodTick - 1) / _periodTick);
Tick nextPeriod = periods * _periodTick;
schedule(&syncEvent, nextPeriod);
} else {
// Stop event.
deschedule(&syncEvent);
}
}
/// Configure the period for time sync events.
void
Root::timeSyncPeriod(Time newPeriod)
{
bool en = timeSyncEnabled();
_period = newPeriod;
_periodTick = _period.getTick();
timeSyncEnable(en);
}
/// Set the threshold for time remaining to spin wait.
void
Root::timeSyncSpinThreshold(Time newThreshold)
{
bool en = timeSyncEnabled();
_spinThreshold = newThreshold;
timeSyncEnable(en);
}
Root::Root(RootParams *p) : SimObject(p), _enabled(false),
_periodTick(p->time_sync_period), syncEvent(this)
{
_period.setTick(p->time_sync_period);
_spinThreshold.setTick(p->time_sync_spin_threshold);
assert(_root == NULL);
_root = this;
lastTime.setTimer();
simQuantum = p->sim_quantum;
}
void
Root::initState()
{
timeSyncEnable(params()->time_sync_enable);
}
void
Root::loadState(Checkpoint *cp)
{
SimObject::loadState(cp);
timeSyncEnable(params()->time_sync_enable);
}
void
Root::serialize(std::ostream &os)
{
uint64_t cpt_ver = gem5CheckpointVersion;
SERIALIZE_SCALAR(cpt_ver);
SERIALIZE_SCALAR(FullSystem);
std::string isa = THE_ISA_STR;
SERIALIZE_SCALAR(isa);
}
void
Root::unserialize(Checkpoint *cp, const std::string &section)
{
uint64_t cpt_ver = 0;
UNSERIALIZE_OPT_SCALAR(cpt_ver);
if (cpt_ver < gem5CheckpointVersion) {
warn("**********************************************************\n");
warn("!!!! Checkpoint ver %#x is older than current ver %#x !!!!\n",
cpt_ver, gem5CheckpointVersion);
warn("You might experience some issues when restoring and should run "
"the checkpoint upgrader (util/cpt_upgrader.py) on your "
"checkpoint\n");
warn("**********************************************************\n");
} else if (cpt_ver > gem5CheckpointVersion) {
warn("**********************************************************\n");
warn("!!!! Checkpoint ver %#x is newer than current ver %#x !!!!\n",
cpt_ver, gem5CheckpointVersion);
warn("Running a new checkpoint with an older version of gem5 is not "
"supported. While it might work, you may experience incorrect "
"behavior or crashes.\n");
warn("**********************************************************\n");
}
}
bool FullSystem;
unsigned int FullSystemInt;
Root *
RootParams::create()
{
static bool created = false;
if (created)
panic("only one root object allowed!");
created = true;
FullSystem = full_system;
FullSystemInt = full_system ? 1 : 0;
return new Root(this);
}