gem5/dev/ide_disk.cc
Nathan Binkert 1771ee203f don't use sprintf. It's not guaranteed to not scribble over memory.
base/remote_gdb.cc:
    use snprintf, it's safer
dev/ide_disk.cc:
    use strncpy instead of snprintf

--HG--
extra : convert_revision : 90455e3f6bcb4c771724298a5a0b79a5b483a85c
2005-08-23 11:38:27 -04:00

1235 lines
35 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Device model implementation for an IDE disk
*/
#include <cerrno>
#include <cstring>
#include <deque>
#include <string>
#include "base/cprintf.hh" // csprintf
#include "base/trace.hh"
#include "dev/disk_image.hh"
#include "dev/ide_disk.hh"
#include "dev/ide_ctrl.hh"
#include "dev/tsunami.hh"
#include "dev/tsunami_pchip.hh"
#include "mem/functional/physical.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/dma_interface.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
#include "sim/root.hh"
#include "targetarch/isa_traits.hh"
using namespace std;
IdeDisk::IdeDisk(const string &name, DiskImage *img, PhysicalMemory *phys,
int id, Tick delay)
: SimObject(name), ctrl(NULL), image(img), physmem(phys), diskDelay(delay),
dmaTransferEvent(this), dmaReadWaitEvent(this),
dmaWriteWaitEvent(this), dmaPrdReadEvent(this),
dmaReadEvent(this), dmaWriteEvent(this)
{
// Reset the device state
reset(id);
// fill out the drive ID structure
memset(&driveID, 0, sizeof(struct ataparams));
// Calculate LBA and C/H/S values
uint16_t cylinders;
uint8_t heads;
uint8_t sectors;
uint32_t lba_size = image->size();
if (lba_size >= 16383*16*63) {
cylinders = 16383;
heads = 16;
sectors = 63;
} else {
if (lba_size >= 63)
sectors = 63;
else
sectors = lba_size;
if ((lba_size / sectors) >= 16)
heads = 16;
else
heads = (lba_size / sectors);
cylinders = lba_size / (heads * sectors);
}
// Setup the model name
strncpy((char *)driveID.atap_model, "5MI EDD si k",
sizeof(driveID.atap_model));
// Set the maximum multisector transfer size
driveID.atap_multi = MAX_MULTSECT;
// IORDY supported, IORDY disabled, LBA enabled, DMA enabled
driveID.atap_capabilities1 = 0x7;
// UDMA support, EIDE support
driveID.atap_extensions = 0x6;
// Setup default C/H/S settings
driveID.atap_cylinders = cylinders;
driveID.atap_sectors = sectors;
driveID.atap_heads = heads;
// Setup the current multisector transfer size
driveID.atap_curmulti = MAX_MULTSECT;
driveID.atap_curmulti_valid = 0x1;
// Number of sectors on disk
driveID.atap_capacity = lba_size;
// Multiword DMA mode 2 and below supported
driveID.atap_dmamode_supp = 0x400;
// Set PIO mode 4 and 3 supported
driveID.atap_piomode_supp = 0x3;
// Set DMA mode 4 and below supported
driveID.atap_udmamode_supp = 0x10;
// Statically set hardware config word
driveID.atap_hwreset_res = 0x4001;
//arbitrary for now...
driveID.atap_ata_major = WDC_VER_ATA7;
}
IdeDisk::~IdeDisk()
{
// destroy the data buffer
delete [] dataBuffer;
}
void
IdeDisk::reset(int id)
{
// initialize the data buffer and shadow registers
dataBuffer = new uint8_t[MAX_DMA_SIZE];
memset(dataBuffer, 0, MAX_DMA_SIZE);
memset(&cmdReg, 0, sizeof(CommandReg_t));
memset(&curPrd.entry, 0, sizeof(PrdEntry_t));
dmaInterfaceBytes = 0;
curPrdAddr = 0;
curSector = 0;
cmdBytes = 0;
cmdBytesLeft = 0;
drqBytesLeft = 0;
dmaRead = false;
intrPending = false;
// set the device state to idle
dmaState = Dma_Idle;
if (id == DEV0) {
devState = Device_Idle_S;
devID = DEV0;
} else if (id == DEV1) {
devState = Device_Idle_NS;
devID = DEV1;
} else {
panic("Invalid device ID: %#x\n", id);
}
// set the device ready bit
status = STATUS_DRDY_BIT;
/* The error register must be set to 0x1 on start-up to
indicate that no diagnostic error was detected */
cmdReg.error = 0x1;
}
////
// Utility functions
////
bool
IdeDisk::isDEVSelect()
{
return ctrl->isDiskSelected(this);
}
Addr
IdeDisk::pciToDma(Addr pciAddr)
{
if (ctrl)
return ctrl->plat->pciToDma(pciAddr);
else
panic("Access to unset controller!\n");
}
uint32_t
IdeDisk::bytesInDmaPage(Addr curAddr, uint32_t bytesLeft)
{
uint32_t bytesInPage = 0;
// First calculate how many bytes could be in the page
if (bytesLeft > TheISA::PageBytes)
bytesInPage = TheISA::PageBytes;
else
bytesInPage = bytesLeft;
// Next, see if we have crossed a page boundary, and adjust
Addr upperBound = curAddr + bytesInPage;
Addr pageBound = TheISA::TruncPage(curAddr) + TheISA::PageBytes;
assert(upperBound >= curAddr && "DMA read wraps around address space!\n");
if (upperBound >= pageBound)
bytesInPage = pageBound - curAddr;
return bytesInPage;
}
////
// Device registers read/write
////
void
IdeDisk::read(const Addr &offset, IdeRegType reg_type, uint8_t *data)
{
DevAction_t action = ACT_NONE;
switch (reg_type) {
case COMMAND_BLOCK:
switch (offset) {
// Data transfers occur two bytes at a time
case DATA_OFFSET:
*(uint16_t*)data = cmdReg.data;
action = ACT_DATA_READ_SHORT;
break;
case ERROR_OFFSET:
*data = cmdReg.error;
break;
case NSECTOR_OFFSET:
*data = cmdReg.sec_count;
break;
case SECTOR_OFFSET:
*data = cmdReg.sec_num;
break;
case LCYL_OFFSET:
*data = cmdReg.cyl_low;
break;
case HCYL_OFFSET:
*data = cmdReg.cyl_high;
break;
case DRIVE_OFFSET:
*data = cmdReg.drive;
break;
case STATUS_OFFSET:
*data = status;
action = ACT_STAT_READ;
break;
default:
panic("Invalid IDE command register offset: %#x\n", offset);
}
break;
case CONTROL_BLOCK:
if (offset == ALTSTAT_OFFSET)
*data = status;
else
panic("Invalid IDE control register offset: %#x\n", offset);
break;
default:
panic("Unknown register block!\n");
}
if (action != ACT_NONE)
updateState(action);
}
void
IdeDisk::write(const Addr &offset, IdeRegType reg_type, const uint8_t *data)
{
DevAction_t action = ACT_NONE;
switch (reg_type) {
case COMMAND_BLOCK:
switch (offset) {
case DATA_OFFSET:
cmdReg.data = *(uint16_t*)data;
action = ACT_DATA_WRITE_SHORT;
break;
case FEATURES_OFFSET:
break;
case NSECTOR_OFFSET:
cmdReg.sec_count = *data;
break;
case SECTOR_OFFSET:
cmdReg.sec_num = *data;
break;
case LCYL_OFFSET:
cmdReg.cyl_low = *data;
break;
case HCYL_OFFSET:
cmdReg.cyl_high = *data;
break;
case DRIVE_OFFSET:
cmdReg.drive = *data;
action = ACT_SELECT_WRITE;
break;
case COMMAND_OFFSET:
cmdReg.command = *data;
action = ACT_CMD_WRITE;
break;
default:
panic("Invalid IDE command register offset: %#x\n", offset);
}
break;
case CONTROL_BLOCK:
if (offset == CONTROL_OFFSET) {
if (*data & CONTROL_RST_BIT) {
// force the device into the reset state
devState = Device_Srst;
action = ACT_SRST_SET;
} else if (devState == Device_Srst && !(*data & CONTROL_RST_BIT))
action = ACT_SRST_CLEAR;
nIENBit = (*data & CONTROL_IEN_BIT) ? true : false;
}
else
panic("Invalid IDE control register offset: %#x\n", offset);
break;
default:
panic("Unknown register block!\n");
}
if (action != ACT_NONE)
updateState(action);
}
////
// Perform DMA transactions
////
void
IdeDisk::doDmaTransfer()
{
if (dmaState != Dma_Transfer || devState != Transfer_Data_Dma)
panic("Inconsistent DMA transfer state: dmaState = %d devState = %d\n",
dmaState, devState);
// first read the current PRD
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaTransferEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
dmaInterface->doDMA(Read, curPrdAddr, sizeof(PrdEntry_t), curTick,
&dmaPrdReadEvent);
} else {
dmaPrdReadDone();
}
}
void
IdeDisk::dmaPrdReadDone()
{
// actually copy the PRD from physical memory
memcpy((void *)&curPrd.entry,
physmem->dma_addr(curPrdAddr, sizeof(PrdEntry_t)),
sizeof(PrdEntry_t));
DPRINTF(IdeDisk,
"PRD: baseAddr:%#x (%#x) byteCount:%d (%d) eot:%#x sector:%d\n",
curPrd.getBaseAddr(), pciToDma(curPrd.getBaseAddr()),
curPrd.getByteCount(), (cmdBytesLeft/SectorSize),
curPrd.getEOT(), curSector);
// the prd pointer has already been translated, so just do an increment
curPrdAddr = curPrdAddr + sizeof(PrdEntry_t);
if (dmaRead)
doDmaRead();
else
doDmaWrite();
}
void
IdeDisk::doDmaRead()
{
/** @todo we need to figure out what the delay actually will be */
Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);
DPRINTF(IdeDisk, "doDmaRead, diskDelay: %d totalDiskDelay: %d\n",
diskDelay, totalDiskDelay);
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaReadWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
Addr dmaAddr = pciToDma(curPrd.getBaseAddr());
uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
(uint32_t)curPrd.getByteCount());
dmaInterfaceBytes = bytesInPage;
dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
curTick + totalDiskDelay, &dmaReadEvent);
} else {
// schedule dmaReadEvent with sectorDelay (dmaReadDone)
dmaReadEvent.schedule(curTick + totalDiskDelay);
}
}
void
IdeDisk::dmaReadDone()
{
Addr curAddr = 0, dmaAddr = 0;
uint32_t bytesWritten = 0, bytesInPage = 0, bytesLeft = 0;
// continue to use the DMA interface until all pages are read
if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
// see if the interface is busy
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaReadEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
dmaAddr = pciToDma(curAddr);
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
dmaInterfaceBytes += bytesInPage;
dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
curTick, &dmaReadEvent);
return;
}
// set initial address
curAddr = curPrd.getBaseAddr();
// clear out the data buffer
memset(dataBuffer, 0, MAX_DMA_SIZE);
// read the data from memory via DMA into a data buffer
while (bytesWritten < curPrd.getByteCount()) {
if (cmdBytesLeft <= 0)
panic("DMA data is larger than # of sectors specified\n");
dmaAddr = pciToDma(curAddr);
// calculate how many bytes are in the current page
bytesLeft = curPrd.getByteCount() - bytesWritten;
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
// copy the data from memory into the data buffer
memcpy((void *)(dataBuffer + bytesWritten),
physmem->dma_addr(dmaAddr, bytesInPage),
bytesInPage);
curAddr += bytesInPage;
bytesWritten += bytesInPage;
cmdBytesLeft -= bytesInPage;
}
// write the data to the disk image
for (bytesWritten = 0;
bytesWritten < curPrd.getByteCount();
bytesWritten += SectorSize) {
writeDisk(curSector++, (uint8_t *)(dataBuffer + bytesWritten));
}
// check for the EOT
if (curPrd.getEOT()) {
assert(cmdBytesLeft == 0);
dmaState = Dma_Idle;
updateState(ACT_DMA_DONE);
} else {
doDmaTransfer();
}
}
void
IdeDisk::doDmaWrite()
{
/** @todo we need to figure out what the delay actually will be */
Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);
DPRINTF(IdeDisk, "doDmaWrite, diskDelay: %d totalDiskDelay: %d\n",
diskDelay, totalDiskDelay);
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaWriteWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
Addr dmaAddr = pciToDma(curPrd.getBaseAddr());
uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
(uint32_t)curPrd.getByteCount());
dmaInterfaceBytes = bytesInPage;
dmaInterface->doDMA(WriteInvalidate, dmaAddr,
bytesInPage, curTick + totalDiskDelay,
&dmaWriteEvent);
} else {
// schedule event with disk delay (dmaWriteDone)
dmaWriteEvent.schedule(curTick + totalDiskDelay);
}
}
void
IdeDisk::dmaWriteDone()
{
Addr curAddr = 0, pageAddr = 0, dmaAddr = 0;
uint32_t bytesRead = 0, bytesInPage = 0;
// continue to use the DMA interface until all pages are read
if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
// see if the interface is busy
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaWriteEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
dmaAddr = pciToDma(curAddr);
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
dmaInterfaceBytes += bytesInPage;
dmaInterface->doDMA(WriteInvalidate, dmaAddr,
bytesInPage, curTick,
&dmaWriteEvent);
return;
}
// setup the initial page and DMA address
curAddr = curPrd.getBaseAddr();
pageAddr = TheISA::TruncPage(curAddr);
dmaAddr = pciToDma(curAddr);
// clear out the data buffer
memset(dataBuffer, 0, MAX_DMA_SIZE);
while (bytesRead < curPrd.getByteCount()) {
// see if we have crossed into a new page
if (pageAddr != TheISA::TruncPage(curAddr)) {
// write the data to memory
memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
(void *)(dataBuffer + (bytesRead - bytesInPage)),
bytesInPage);
// update the DMA address and page address
pageAddr = TheISA::TruncPage(curAddr);
dmaAddr = pciToDma(curAddr);
bytesInPage = 0;
}
if (cmdBytesLeft <= 0)
panic("DMA requested data is larger than # sectors specified\n");
readDisk(curSector++, (uint8_t *)(dataBuffer + bytesRead));
curAddr += SectorSize;
bytesRead += SectorSize;
bytesInPage += SectorSize;
cmdBytesLeft -= SectorSize;
}
// write the last page worth read to memory
if (bytesInPage != 0) {
memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
(void *)(dataBuffer + (bytesRead - bytesInPage)),
bytesInPage);
}
// check for the EOT
if (curPrd.getEOT()) {
assert(cmdBytesLeft == 0);
dmaState = Dma_Idle;
updateState(ACT_DMA_DONE);
} else {
doDmaTransfer();
}
}
////
// Disk utility routines
///
void
IdeDisk::readDisk(uint32_t sector, uint8_t *data)
{
uint32_t bytesRead = image->read(data, sector);
if (bytesRead != SectorSize)
panic("Can't read from %s. Only %d of %d read. errno=%d\n",
name(), bytesRead, SectorSize, errno);
}
void
IdeDisk::writeDisk(uint32_t sector, uint8_t *data)
{
uint32_t bytesWritten = image->write(data, sector);
if (bytesWritten != SectorSize)
panic("Can't write to %s. Only %d of %d written. errno=%d\n",
name(), bytesWritten, SectorSize, errno);
}
////
// Setup and handle commands
////
void
IdeDisk::startDma(const uint32_t &prdTableBase)
{
if (dmaState != Dma_Start)
panic("Inconsistent DMA state, should be in Dma_Start!\n");
if (devState != Transfer_Data_Dma)
panic("Inconsistent device state for DMA start!\n");
// PRD base address is given by bits 31:2
curPrdAddr = pciToDma((Addr)(prdTableBase & ~ULL(0x3)));
dmaState = Dma_Transfer;
// schedule dma transfer (doDmaTransfer)
dmaTransferEvent.schedule(curTick + 1);
}
void
IdeDisk::abortDma()
{
if (dmaState == Dma_Idle)
panic("Inconsistent DMA state, should be Start or Transfer!");
if (devState != Transfer_Data_Dma && devState != Prepare_Data_Dma)
panic("Inconsistent device state, should be Transfer or Prepare!\n");
updateState(ACT_CMD_ERROR);
}
void
IdeDisk::startCommand()
{
DevAction_t action = ACT_NONE;
uint32_t size = 0;
dmaRead = false;
// Decode commands
switch (cmdReg.command) {
// Supported non-data commands
case WDSF_READ_NATIVE_MAX:
size = image->size() - 1;
cmdReg.sec_num = (size & 0xff);
cmdReg.cyl_low = ((size & 0xff00) >> 8);
cmdReg.cyl_high = ((size & 0xff0000) >> 16);
cmdReg.head = ((size & 0xf000000) >> 24);
devState = Command_Execution;
action = ACT_CMD_COMPLETE;
break;
case WDCC_RECAL:
case WDCC_IDP:
case WDCC_STANDBY_IMMED:
case WDCC_FLUSHCACHE:
case WDSF_VERIFY:
case WDSF_SEEK:
case SET_FEATURES:
case WDCC_SETMULTI:
devState = Command_Execution;
action = ACT_CMD_COMPLETE;
break;
// Supported PIO data-in commands
case WDCC_IDENTIFY:
cmdBytes = cmdBytesLeft = sizeof(struct ataparams);
devState = Prepare_Data_In;
action = ACT_DATA_READY;
break;
case WDCC_READMULTI:
case WDCC_READ:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
/** @todo make this a scheduled event to simulate disk delay */
devState = Prepare_Data_In;
action = ACT_DATA_READY;
break;
// Supported PIO data-out commands
case WDCC_WRITEMULTI:
case WDCC_WRITE:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
devState = Prepare_Data_Out;
action = ACT_DATA_READY;
break;
// Supported DMA commands
case WDCC_WRITEDMA:
dmaRead = true; // a write to the disk is a DMA read from memory
case WDCC_READDMA:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
devState = Prepare_Data_Dma;
action = ACT_DMA_READY;
break;
default:
panic("Unsupported ATA command: %#x\n", cmdReg.command);
}
if (action != ACT_NONE) {
// set the BSY bit
status |= STATUS_BSY_BIT;
// clear the DRQ bit
status &= ~STATUS_DRQ_BIT;
// clear the DF bit
status &= ~STATUS_DF_BIT;
updateState(action);
}
}
////
// Handle setting and clearing interrupts
////
void
IdeDisk::intrPost()
{
DPRINTF(IdeDisk, "Posting Interrupt\n");
if (intrPending)
panic("Attempt to post an interrupt with one pending\n");
intrPending = true;
// talk to controller to set interrupt
if (ctrl) {
ctrl->bmi_regs.bmis0 |= IDEINTS;
ctrl->intrPost();
}
}
void
IdeDisk::intrClear()
{
DPRINTF(IdeDisk, "Clearing Interrupt\n");
if (!intrPending)
panic("Attempt to clear a non-pending interrupt\n");
intrPending = false;
// talk to controller to clear interrupt
if (ctrl)
ctrl->intrClear();
}
////
// Manage the device internal state machine
////
void
IdeDisk::updateState(DevAction_t action)
{
switch (devState) {
case Device_Srst:
if (action == ACT_SRST_SET) {
// set the BSY bit
status |= STATUS_BSY_BIT;
} else if (action == ACT_SRST_CLEAR) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// reset the device state
reset(devID);
}
break;
case Device_Idle_S:
if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
devState = Device_Idle_NS;
} else if (action == ACT_CMD_WRITE) {
startCommand();
}
break;
case Device_Idle_SI:
if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
devState = Device_Idle_NS;
intrClear();
} else if (action == ACT_STAT_READ || isIENSet()) {
devState = Device_Idle_S;
intrClear();
} else if (action == ACT_CMD_WRITE) {
intrClear();
startCommand();
}
break;
case Device_Idle_NS:
if (action == ACT_SELECT_WRITE && isDEVSelect()) {
if (!isIENSet() && intrPending) {
devState = Device_Idle_SI;
intrPost();
}
if (isIENSet() || !intrPending) {
devState = Device_Idle_S;
}
}
break;
case Command_Execution:
if (action == ACT_CMD_COMPLETE) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
}
break;
case Prepare_Data_In:
if (action == ACT_CMD_ERROR) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DATA_READY) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
// copy the data into the data buffer
if (cmdReg.command == WDCC_IDENTIFY) {
// Reset the drqBytes for this block
drqBytesLeft = sizeof(struct ataparams);
memcpy((void *)dataBuffer, (void *)&driveID,
sizeof(struct ataparams));
} else {
// Reset the drqBytes for this block
drqBytesLeft = SectorSize;
readDisk(curSector++, dataBuffer);
}
// put the first two bytes into the data register
memcpy((void *)&cmdReg.data, (void *)dataBuffer,
sizeof(uint16_t));
if (!isIENSet()) {
devState = Data_Ready_INTRQ_In;
intrPost();
} else {
devState = Transfer_Data_In;
}
}
break;
case Data_Ready_INTRQ_In:
if (action == ACT_STAT_READ) {
devState = Transfer_Data_In;
intrClear();
}
break;
case Transfer_Data_In:
if (action == ACT_DATA_READ_BYTE || action == ACT_DATA_READ_SHORT) {
if (action == ACT_DATA_READ_BYTE) {
panic("DEBUG: READING DATA ONE BYTE AT A TIME!\n");
} else {
drqBytesLeft -= 2;
cmdBytesLeft -= 2;
// copy next short into data registers
if (drqBytesLeft)
memcpy((void *)&cmdReg.data,
(void *)&dataBuffer[SectorSize - drqBytesLeft],
sizeof(uint16_t));
}
if (drqBytesLeft == 0) {
if (cmdBytesLeft == 0) {
// Clear the BSY bit
setComplete();
devState = Device_Idle_S;
} else {
devState = Prepare_Data_In;
// set the BSY_BIT
status |= STATUS_BSY_BIT;
// clear the DRQ_BIT
status &= ~STATUS_DRQ_BIT;
/** @todo change this to a scheduled event to simulate
disk delay */
updateState(ACT_DATA_READY);
}
}
}
break;
case Prepare_Data_Out:
if (action == ACT_CMD_ERROR || cmdBytesLeft == 0) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DATA_READY && cmdBytesLeft != 0) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
// clear the data buffer to get it ready for writes
memset(dataBuffer, 0, MAX_DMA_SIZE);
// reset the drqBytes for this block
drqBytesLeft = SectorSize;
if (cmdBytesLeft == cmdBytes || isIENSet()) {
devState = Transfer_Data_Out;
} else {
devState = Data_Ready_INTRQ_Out;
intrPost();
}
}
break;
case Data_Ready_INTRQ_Out:
if (action == ACT_STAT_READ) {
devState = Transfer_Data_Out;
intrClear();
}
break;
case Transfer_Data_Out:
if (action == ACT_DATA_WRITE_BYTE ||
action == ACT_DATA_WRITE_SHORT) {
if (action == ACT_DATA_READ_BYTE) {
panic("DEBUG: WRITING DATA ONE BYTE AT A TIME!\n");
} else {
// copy the latest short into the data buffer
memcpy((void *)&dataBuffer[SectorSize - drqBytesLeft],
(void *)&cmdReg.data,
sizeof(uint16_t));
drqBytesLeft -= 2;
cmdBytesLeft -= 2;
}
if (drqBytesLeft == 0) {
// copy the block to the disk
writeDisk(curSector++, dataBuffer);
// set the BSY bit
status |= STATUS_BSY_BIT;
// set the seek bit
status |= STATUS_SEEK_BIT;
// clear the DRQ bit
status &= ~STATUS_DRQ_BIT;
devState = Prepare_Data_Out;
/** @todo change this to a scheduled event to simulate
disk delay */
updateState(ACT_DATA_READY);
}
}
break;
case Prepare_Data_Dma:
if (action == ACT_CMD_ERROR) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DMA_READY) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
devState = Transfer_Data_Dma;
if (dmaState != Dma_Idle)
panic("Inconsistent DMA state, should be Dma_Idle\n");
dmaState = Dma_Start;
// wait for the write to the DMA start bit
}
break;
case Transfer_Data_Dma:
if (action == ACT_CMD_ERROR || action == ACT_DMA_DONE) {
// clear the BSY bit
setComplete();
// set the seek bit
status |= STATUS_SEEK_BIT;
// clear the controller state for DMA transfer
ctrl->setDmaComplete(this);
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
}
break;
default:
panic("Unknown IDE device state: %#x\n", devState);
}
}
void
IdeDisk::serialize(ostream &os)
{
// Check all outstanding events to see if they are scheduled
// these are all mutually exclusive
Tick reschedule = 0;
Events_t event = None;
int eventCount = 0;
if (dmaTransferEvent.scheduled()) {
reschedule = dmaTransferEvent.when();
event = Transfer;
eventCount++;
}
if (dmaReadWaitEvent.scheduled()) {
reschedule = dmaReadWaitEvent.when();
event = ReadWait;
eventCount++;
}
if (dmaWriteWaitEvent.scheduled()) {
reschedule = dmaWriteWaitEvent.when();
event = WriteWait;
eventCount++;
}
if (dmaPrdReadEvent.scheduled()) {
reschedule = dmaPrdReadEvent.when();
event = PrdRead;
eventCount++;
}
if (dmaReadEvent.scheduled()) {
reschedule = dmaReadEvent.when();
event = DmaRead;
eventCount++;
}
if (dmaWriteEvent.scheduled()) {
reschedule = dmaWriteEvent.when();
event = DmaWrite;
eventCount++;
}
assert(eventCount <= 1);
SERIALIZE_SCALAR(reschedule);
SERIALIZE_ENUM(event);
// Serialize device registers
SERIALIZE_SCALAR(cmdReg.data);
SERIALIZE_SCALAR(cmdReg.sec_count);
SERIALIZE_SCALAR(cmdReg.sec_num);
SERIALIZE_SCALAR(cmdReg.cyl_low);
SERIALIZE_SCALAR(cmdReg.cyl_high);
SERIALIZE_SCALAR(cmdReg.drive);
SERIALIZE_SCALAR(cmdReg.command);
SERIALIZE_SCALAR(status);
SERIALIZE_SCALAR(nIENBit);
SERIALIZE_SCALAR(devID);
// Serialize the PRD related information
SERIALIZE_SCALAR(curPrd.entry.baseAddr);
SERIALIZE_SCALAR(curPrd.entry.byteCount);
SERIALIZE_SCALAR(curPrd.entry.endOfTable);
SERIALIZE_SCALAR(curPrdAddr);
// Serialize current transfer related information
SERIALIZE_SCALAR(cmdBytesLeft);
SERIALIZE_SCALAR(cmdBytes);
SERIALIZE_SCALAR(drqBytesLeft);
SERIALIZE_SCALAR(curSector);
SERIALIZE_SCALAR(dmaRead);
SERIALIZE_SCALAR(dmaInterfaceBytes);
SERIALIZE_SCALAR(intrPending);
SERIALIZE_ENUM(devState);
SERIALIZE_ENUM(dmaState);
SERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}
void
IdeDisk::unserialize(Checkpoint *cp, const string &section)
{
// Reschedule events that were outstanding
// these are all mutually exclusive
Tick reschedule = 0;
Events_t event = None;
UNSERIALIZE_SCALAR(reschedule);
UNSERIALIZE_ENUM(event);
switch (event) {
case None : break;
case Transfer : dmaTransferEvent.schedule(reschedule); break;
case ReadWait : dmaReadWaitEvent.schedule(reschedule); break;
case WriteWait : dmaWriteWaitEvent.schedule(reschedule); break;
case PrdRead : dmaPrdReadEvent.schedule(reschedule); break;
case DmaRead : dmaReadEvent.schedule(reschedule); break;
case DmaWrite : dmaWriteEvent.schedule(reschedule); break;
}
// Unserialize device registers
UNSERIALIZE_SCALAR(cmdReg.data);
UNSERIALIZE_SCALAR(cmdReg.sec_count);
UNSERIALIZE_SCALAR(cmdReg.sec_num);
UNSERIALIZE_SCALAR(cmdReg.cyl_low);
UNSERIALIZE_SCALAR(cmdReg.cyl_high);
UNSERIALIZE_SCALAR(cmdReg.drive);
UNSERIALIZE_SCALAR(cmdReg.command);
UNSERIALIZE_SCALAR(status);
UNSERIALIZE_SCALAR(nIENBit);
UNSERIALIZE_SCALAR(devID);
// Unserialize the PRD related information
UNSERIALIZE_SCALAR(curPrd.entry.baseAddr);
UNSERIALIZE_SCALAR(curPrd.entry.byteCount);
UNSERIALIZE_SCALAR(curPrd.entry.endOfTable);
UNSERIALIZE_SCALAR(curPrdAddr);
// Unserialize current transfer related information
UNSERIALIZE_SCALAR(cmdBytes);
UNSERIALIZE_SCALAR(cmdBytesLeft);
UNSERIALIZE_SCALAR(drqBytesLeft);
UNSERIALIZE_SCALAR(curSector);
UNSERIALIZE_SCALAR(dmaRead);
UNSERIALIZE_SCALAR(dmaInterfaceBytes);
UNSERIALIZE_SCALAR(intrPending);
UNSERIALIZE_ENUM(devState);
UNSERIALIZE_ENUM(dmaState);
UNSERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
enum DriveID { master, slave };
static const char *DriveID_strings[] = { "master", "slave" };
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)
SimObjectParam<DiskImage *> image;
SimObjectParam<PhysicalMemory *> physmem;
SimpleEnumParam<DriveID> driveID;
Param<int> delay;
END_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)
BEGIN_INIT_SIM_OBJECT_PARAMS(IdeDisk)
INIT_PARAM(image, "Disk image"),
INIT_PARAM(physmem, "Physical memory"),
INIT_ENUM_PARAM(driveID, "Drive ID (0=master 1=slave)", DriveID_strings),
INIT_PARAM_DFLT(delay, "Fixed disk delay in microseconds", 1)
END_INIT_SIM_OBJECT_PARAMS(IdeDisk)
CREATE_SIM_OBJECT(IdeDisk)
{
return new IdeDisk(getInstanceName(), image, physmem, driveID, delay);
}
REGISTER_SIM_OBJECT("IdeDisk", IdeDisk)
#endif //DOXYGEN_SHOULD_SKIP_THIS