2575 lines
121 KiB
C++
2575 lines
121 KiB
C++
// -*- mode:c++ -*-
|
|
|
|
// Copyright (c) 2007 MIPS Technologies, Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met: redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer;
|
|
// redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution;
|
|
// neither the name of the copyright holders nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Authors: Korey Sewell
|
|
// Brett Miller
|
|
// Jaidev Patwardhan
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//
|
|
// The actual MIPS32 ISA decoder
|
|
// -----------------------------
|
|
// The following instructions are specified in the MIPS32 ISA
|
|
// Specification. Decoding closely follows the style specified
|
|
// in the MIPS32 ISA specification document starting with Table
|
|
// A-2 (document available @ http://www.mips.com)
|
|
//
|
|
decode OPCODE_HI default Unknown::unknown() {
|
|
//Table A-2
|
|
0x0: decode OPCODE_LO {
|
|
0x0: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
0x1: decode MOVCI {
|
|
format BasicOp {
|
|
0: movf({{
|
|
Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs;
|
|
}});
|
|
1: movt({{
|
|
Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs;
|
|
}});
|
|
}
|
|
}
|
|
|
|
format BasicOp {
|
|
//Table A-3 Note: "Specific encodings of the rd, rs, and
|
|
//rt fields are used to distinguish SLL, SSNOP, and EHB
|
|
//functions
|
|
0x0: decode RS {
|
|
0x0: decode RT_RD {
|
|
0x0: decode SA default Nop::nop() {
|
|
0x1: ssnop({{;}});
|
|
0x3: ehb({{;}});
|
|
}
|
|
default: sll({{ Rd = Rt.uw << SA; }});
|
|
}
|
|
}
|
|
|
|
0x2: decode RS_SRL {
|
|
0x0:decode SRL {
|
|
0: srl({{ Rd = Rt.uw >> SA; }});
|
|
|
|
//Hardcoded assuming 32-bit ISA,
|
|
//probably need parameter here
|
|
1: rotr({{
|
|
Rd = (Rt.uw << (32 - SA)) | (Rt.uw >> SA);
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x3: decode RS {
|
|
0x0: sra({{
|
|
uint32_t temp = Rt >> SA;
|
|
if ( (Rt & 0x80000000) > 0 ) {
|
|
uint32_t mask = 0x80000000;
|
|
for(int i=0; i < SA; i++) {
|
|
temp |= mask;
|
|
mask = mask >> 1;
|
|
}
|
|
}
|
|
Rd = temp;
|
|
}});
|
|
}
|
|
|
|
0x4: sllv({{ Rd = Rt.uw << Rs<4:0>; }});
|
|
|
|
0x6: decode SRLV {
|
|
0: srlv({{ Rd = Rt.uw >> Rs<4:0>; }});
|
|
|
|
//Hardcoded assuming 32-bit ISA,
|
|
//probably need parameter here
|
|
1: rotrv({{
|
|
Rd = (Rt.uw << (32 - Rs<4:0>)) |
|
|
(Rt.uw >> Rs<4:0>);
|
|
}});
|
|
}
|
|
|
|
0x7: srav({{
|
|
int shift_amt = Rs<4:0>;
|
|
|
|
uint32_t temp = Rt >> shift_amt;
|
|
|
|
if ((Rt & 0x80000000) > 0) {
|
|
uint32_t mask = 0x80000000;
|
|
for (int i = 0; i < shift_amt; i++) {
|
|
temp |= mask;
|
|
mask = mask >> 1;
|
|
}
|
|
}
|
|
Rd = temp;
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x1: decode FUNCTION_LO {
|
|
//Table A-3 Note: "Specific encodings of the hint field are
|
|
//used to distinguish JR from JR.HB and JALR from JALR.HB"
|
|
format Jump {
|
|
0x0: decode HINT {
|
|
0x1: jr_hb({{
|
|
Config1Reg config1 = Config1;
|
|
if (config1.ca == 0) {
|
|
NNPC = Rs;
|
|
} else {
|
|
panic("MIPS16e not supported\n");
|
|
}
|
|
}}, IsReturn, ClearHazards);
|
|
default: jr({{
|
|
Config1Reg config1 = Config1;
|
|
if (config1.ca == 0) {
|
|
NNPC = Rs;
|
|
} else {
|
|
panic("MIPS16e not supported\n");
|
|
}
|
|
}}, IsReturn);
|
|
}
|
|
|
|
0x1: decode HINT {
|
|
0x1: jalr_hb({{
|
|
Rd = NNPC;
|
|
NNPC = Rs;
|
|
}}, IsCall, ClearHazards);
|
|
default: jalr({{
|
|
Rd = NNPC;
|
|
NNPC = Rs;
|
|
}}, IsCall);
|
|
}
|
|
}
|
|
|
|
format BasicOp {
|
|
0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
|
|
0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
|
|
#if FULL_SYSTEM
|
|
0x4: syscall({{ fault = new SystemCallFault(); }});
|
|
#else
|
|
0x4: syscall({{ xc->syscall(R2); }},
|
|
IsSerializeAfter, IsNonSpeculative);
|
|
#endif
|
|
0x7: sync({{ ; }}, IsMemBarrier);
|
|
0x5: break({{fault = new BreakpointFault();}});
|
|
}
|
|
|
|
}
|
|
|
|
0x2: decode FUNCTION_LO {
|
|
0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }},
|
|
IntMultOp, IsIprAccess);
|
|
0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
|
|
0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }},
|
|
IntMultOp, IsIprAccess);
|
|
0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
|
|
}
|
|
|
|
0x3: decode FUNCTION_LO {
|
|
format HiLoRdSelValOp {
|
|
0x0: mult({{ val = Rs.sd * Rt.sd; }}, IntMultOp);
|
|
0x1: multu({{ val = Rs.ud * Rt.ud; }}, IntMultOp);
|
|
}
|
|
|
|
format HiLoOp {
|
|
0x2: div({{
|
|
if (Rt.sd != 0) {
|
|
HI0 = Rs.sd % Rt.sd;
|
|
LO0 = Rs.sd / Rt.sd;
|
|
}
|
|
}}, IntDivOp);
|
|
|
|
0x3: divu({{
|
|
if (Rt.ud != 0) {
|
|
HI0 = Rs.ud % Rt.ud;
|
|
LO0 = Rs.ud / Rt.ud;
|
|
}
|
|
}}, IntDivOp);
|
|
}
|
|
}
|
|
|
|
0x4: decode HINT {
|
|
0x0: decode FUNCTION_LO {
|
|
format IntOp {
|
|
0x0: add({{
|
|
/* More complicated since an ADD can cause
|
|
an arithmetic overflow exception */
|
|
int64_t Src1 = Rs.sw;
|
|
int64_t Src2 = Rt.sw;
|
|
int64_t temp_result;
|
|
#if FULL_SYSTEM
|
|
if (((Src1 >> 31) & 1) == 1)
|
|
Src1 |= 0x100000000LL;
|
|
#endif
|
|
temp_result = Src1 + Src2;
|
|
#if FULL_SYSTEM
|
|
if (bits(temp_result, 31) ==
|
|
bits(temp_result, 32)) {
|
|
#endif
|
|
Rd.sw = temp_result;
|
|
#if FULL_SYSTEM
|
|
} else {
|
|
fault = new ArithmeticFault();
|
|
}
|
|
#endif
|
|
}});
|
|
0x1: addu({{ Rd.sw = Rs.sw + Rt.sw;}});
|
|
0x2: sub({{
|
|
/* More complicated since an SUB can cause
|
|
an arithmetic overflow exception */
|
|
int64_t Src1 = Rs.sw;
|
|
int64_t Src2 = Rt.sw;
|
|
int64_t temp_result = Src1 - Src2;
|
|
#if FULL_SYSTEM
|
|
if (bits(temp_result, 31) ==
|
|
bits(temp_result, 32)) {
|
|
#endif
|
|
Rd.sw = temp_result;
|
|
#if FULL_SYSTEM
|
|
} else {
|
|
fault = new ArithmeticFault();
|
|
}
|
|
#endif
|
|
}});
|
|
0x3: subu({{ Rd.sw = Rs.sw - Rt.sw; }});
|
|
0x4: and({{ Rd = Rs & Rt; }});
|
|
0x5: or({{ Rd = Rs | Rt; }});
|
|
0x6: xor({{ Rd = Rs ^ Rt; }});
|
|
0x7: nor({{ Rd = ~(Rs | Rt); }});
|
|
}
|
|
}
|
|
}
|
|
|
|
0x5: decode HINT {
|
|
0x0: decode FUNCTION_LO {
|
|
format IntOp{
|
|
0x2: slt({{ Rd.sw = (Rs.sw < Rt.sw) ? 1 : 0 }});
|
|
0x3: sltu({{ Rd.uw = (Rs.uw < Rt.uw) ? 1 : 0 }});
|
|
}
|
|
}
|
|
}
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
format Trap {
|
|
0x0: tge({{ cond = (Rs.sw >= Rt.sw); }});
|
|
0x1: tgeu({{ cond = (Rs.uw >= Rt.uw); }});
|
|
0x2: tlt({{ cond = (Rs.sw < Rt.sw); }});
|
|
0x3: tltu({{ cond = (Rs.uw < Rt.uw); }});
|
|
0x4: teq({{ cond = (Rs.sw == Rt.sw); }});
|
|
0x6: tne({{ cond = (Rs.sw != Rt.sw); }});
|
|
}
|
|
}
|
|
}
|
|
|
|
0x1: decode REGIMM_HI {
|
|
0x0: decode REGIMM_LO {
|
|
format Branch {
|
|
0x0: bltz({{ cond = (Rs.sw < 0); }});
|
|
0x1: bgez({{ cond = (Rs.sw >= 0); }});
|
|
0x2: bltzl({{ cond = (Rs.sw < 0); }}, Likely);
|
|
0x3: bgezl({{ cond = (Rs.sw >= 0); }}, Likely);
|
|
}
|
|
}
|
|
|
|
0x1: decode REGIMM_LO {
|
|
format TrapImm {
|
|
0x0: tgei( {{ cond = (Rs.sw >= (int16_t)INTIMM); }});
|
|
0x1: tgeiu({{
|
|
cond = (Rs.uw >= (uint32_t)(int32_t)(int16_t)INTIMM);
|
|
}});
|
|
0x2: tlti( {{ cond = (Rs.sw < (int16_t)INTIMM); }});
|
|
0x3: tltiu({{
|
|
cond = (Rs.uw < (uint32_t)(int32_t)(int16_t)INTIMM);
|
|
}});
|
|
0x4: teqi( {{ cond = (Rs.sw == (int16_t)INTIMM); }});
|
|
0x6: tnei( {{ cond = (Rs.sw != (int16_t)INTIMM); }});
|
|
}
|
|
}
|
|
|
|
0x2: decode REGIMM_LO {
|
|
format Branch {
|
|
0x0: bltzal({{ cond = (Rs.sw < 0); }}, Link);
|
|
0x1: decode RS {
|
|
0x0: bal ({{ cond = 1; }}, IsCall, Link);
|
|
default: bgezal({{ cond = (Rs.sw >= 0); }}, Link);
|
|
}
|
|
0x2: bltzall({{ cond = (Rs.sw < 0); }}, Link, Likely);
|
|
0x3: bgezall({{ cond = (Rs.sw >= 0); }}, Link, Likely);
|
|
}
|
|
}
|
|
|
|
0x3: decode REGIMM_LO {
|
|
// from Table 5-4 MIPS32 REGIMM Encoding of rt Field
|
|
// (DSP ASE MANUAL)
|
|
0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
|
|
format WarnUnimpl {
|
|
0x7: synci();
|
|
}
|
|
}
|
|
}
|
|
|
|
format Jump {
|
|
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }});
|
|
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }},
|
|
IsCall, Link);
|
|
}
|
|
|
|
format Branch {
|
|
0x4: decode RS_RT {
|
|
0x0: b({{ cond = 1; }});
|
|
default: beq({{ cond = (Rs.sw == Rt.sw); }});
|
|
}
|
|
0x5: bne({{ cond = (Rs.sw != Rt.sw); }});
|
|
0x6: blez({{ cond = (Rs.sw <= 0); }});
|
|
0x7: bgtz({{ cond = (Rs.sw > 0); }});
|
|
}
|
|
}
|
|
|
|
0x1: decode OPCODE_LO {
|
|
format IntImmOp {
|
|
0x0: addi({{
|
|
int64_t Src1 = Rs.sw;
|
|
int64_t Src2 = imm;
|
|
int64_t temp_result;
|
|
#if FULL_SYSTEM
|
|
if (((Src1 >> 31) & 1) == 1)
|
|
Src1 |= 0x100000000LL;
|
|
#endif
|
|
temp_result = Src1 + Src2;
|
|
#if FULL_SYSTEM
|
|
if (bits(temp_result, 31) == bits(temp_result, 32)) {
|
|
#endif
|
|
Rt.sw = temp_result;
|
|
#if FULL_SYSTEM
|
|
} else {
|
|
fault = new ArithmeticFault();
|
|
}
|
|
#endif
|
|
}});
|
|
0x1: addiu({{ Rt.sw = Rs.sw + imm; }});
|
|
0x2: slti({{ Rt.sw = (Rs.sw < imm) ? 1 : 0 }});
|
|
|
|
//Edited to include MIPS AVP Pass/Fail instructions and
|
|
//default to the sltiu instruction
|
|
0x3: decode RS_RT_INTIMM {
|
|
0xabc1: BasicOp::fail({{
|
|
exitSimLoop("AVP/SRVP Test Failed");
|
|
}});
|
|
0xabc2: BasicOp::pass({{
|
|
exitSimLoop("AVP/SRVP Test Passed");
|
|
}});
|
|
default: sltiu({{
|
|
Rt.uw = (Rs.uw < (uint32_t)sextImm) ? 1 : 0;
|
|
}});
|
|
}
|
|
|
|
0x4: andi({{ Rt.sw = Rs.sw & zextImm; }});
|
|
0x5: ori({{ Rt.sw = Rs.sw | zextImm; }});
|
|
0x6: xori({{ Rt.sw = Rs.sw ^ zextImm; }});
|
|
|
|
0x7: decode RS {
|
|
0x0: lui({{ Rt = imm << 16; }});
|
|
}
|
|
}
|
|
}
|
|
|
|
0x2: decode OPCODE_LO {
|
|
//Table A-11 MIPS32 COP0 Encoding of rs Field
|
|
0x0: decode RS_MSB {
|
|
0x0: decode RS {
|
|
format CP0Control {
|
|
0x0: mfc0({{
|
|
Config3Reg config3 = Config3;
|
|
PageGrainReg pageGrain = PageGrain;
|
|
Rt = CP0_RD_SEL;
|
|
/* Hack for PageMask */
|
|
if (RD == 5) {
|
|
// PageMask
|
|
if (config3.sp == 0 || pageGrain.esp == 0)
|
|
Rt &= 0xFFFFE7FF;
|
|
}
|
|
}});
|
|
0x4: mtc0({{
|
|
CP0_RD_SEL = Rt;
|
|
CauseReg cause = Cause;
|
|
IntCtlReg intCtl = IntCtl;
|
|
if (RD == 11) {
|
|
// Compare
|
|
if (cause.ti == 1) {
|
|
cause.ti = 0;
|
|
int offset = 10; // corresponding to cause.ip0
|
|
offset += intCtl.ipti - 2;
|
|
replaceBits(cause, offset, offset, 0);
|
|
}
|
|
}
|
|
Cause = cause;
|
|
}});
|
|
}
|
|
format CP0Unimpl {
|
|
0x1: dmfc0();
|
|
0x5: dmtc0();
|
|
default: unknown();
|
|
}
|
|
format MT_MFTR {
|
|
// Decode MIPS MT MFTR instruction into sub-instructions
|
|
0x8: decode MT_U {
|
|
0x0: mftc0({{
|
|
data = xc->readRegOtherThread((RT << 3 | SEL) +
|
|
Ctrl_Base_DepTag);
|
|
}});
|
|
0x1: decode SEL {
|
|
0x0: mftgpr({{
|
|
data = xc->readRegOtherThread(RT);
|
|
}});
|
|
0x1: decode RT {
|
|
0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_LO0); }});
|
|
0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_HI0); }});
|
|
0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(INTREG_DSP_ACX0); }});
|
|
0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_LO1); }});
|
|
0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_HI1); }});
|
|
0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(INTREG_DSP_ACX1); }});
|
|
0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_LO2); }});
|
|
0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_HI2); }});
|
|
0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(INTREG_DSP_ACX2); }});
|
|
0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_LO3); }});
|
|
0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_HI3); }});
|
|
0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(INTREG_DSP_ACX3); }});
|
|
0x16: mftdsp({{ data = xc->readRegOtherThread(INTREG_DSP_CONTROL); }});
|
|
default: CP0Unimpl::unknown();
|
|
}
|
|
0x2: decode MT_H {
|
|
0x0: mftc1({{ data = xc->readRegOtherThread(RT +
|
|
FP_Base_DepTag);
|
|
}});
|
|
0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
|
|
FP_Base_DepTag);
|
|
}});
|
|
}
|
|
0x3: cftc1({{
|
|
uint32_t fcsr_val = xc->readRegOtherThread(FLOATREG_FCSR +
|
|
FP_Base_DepTag);
|
|
switch (RT) {
|
|
case 0:
|
|
data = xc->readRegOtherThread(FLOATREG_FIR +
|
|
Ctrl_Base_DepTag);
|
|
break;
|
|
case 25:
|
|
data = (fcsr_val & 0xFE000000 >> 24) |
|
|
(fcsr_val & 0x00800000 >> 23);
|
|
break;
|
|
case 26:
|
|
data = fcsr_val & 0x0003F07C;
|
|
break;
|
|
case 28:
|
|
data = (fcsr_val & 0x00000F80) |
|
|
(fcsr_val & 0x01000000 >> 21) |
|
|
(fcsr_val & 0x00000003);
|
|
break;
|
|
case 31:
|
|
data = fcsr_val;
|
|
break;
|
|
default:
|
|
fatal("FP Control Value (%d) Not Valid");
|
|
}
|
|
}});
|
|
default: CP0Unimpl::unknown();
|
|
}
|
|
}
|
|
}
|
|
|
|
format MT_MTTR {
|
|
// Decode MIPS MT MTTR instruction into sub-instructions
|
|
0xC: decode MT_U {
|
|
0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Ctrl_Base_DepTag,
|
|
Rt);
|
|
}});
|
|
0x1: decode SEL {
|
|
0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
|
|
0x1: decode RT {
|
|
0x0: mttlo_dsp0({{ xc->setRegOtherThread(INTREG_DSP_LO0, Rt);
|
|
}});
|
|
0x1: mtthi_dsp0({{ xc->setRegOtherThread(INTREG_DSP_HI0,
|
|
Rt);
|
|
}});
|
|
0x2: mttacx_dsp0({{ xc->setRegOtherThread(INTREG_DSP_ACX0,
|
|
Rt);
|
|
}});
|
|
0x4: mttlo_dsp1({{ xc->setRegOtherThread(INTREG_DSP_LO1,
|
|
Rt);
|
|
}});
|
|
0x5: mtthi_dsp1({{ xc->setRegOtherThread(INTREG_DSP_HI1,
|
|
Rt);
|
|
}});
|
|
0x6: mttacx_dsp1({{ xc->setRegOtherThread(INTREG_DSP_ACX1,
|
|
Rt);
|
|
}});
|
|
0x8: mttlo_dsp2({{ xc->setRegOtherThread(INTREG_DSP_LO2,
|
|
Rt);
|
|
}});
|
|
0x9: mtthi_dsp2({{ xc->setRegOtherThread(INTREG_DSP_HI2,
|
|
Rt);
|
|
}});
|
|
0x10: mttacx_dsp2({{ xc->setRegOtherThread(INTREG_DSP_ACX2,
|
|
Rt);
|
|
}});
|
|
0x12: mttlo_dsp3({{ xc->setRegOtherThread(INTREG_DSP_LO3,
|
|
Rt);
|
|
}});
|
|
0x13: mtthi_dsp3({{ xc->setRegOtherThread(INTREG_DSP_HI3,
|
|
Rt);
|
|
}});
|
|
0x14: mttacx_dsp3({{ xc->setRegOtherThread(INTREG_DSP_ACX3, Rt);
|
|
}});
|
|
0x16: mttdsp({{ xc->setRegOtherThread(INTREG_DSP_CONTROL, Rt); }});
|
|
default: CP0Unimpl::unknown();
|
|
|
|
}
|
|
0x2: mttc1({{
|
|
uint64_t data = xc->readRegOtherThread(RD +
|
|
FP_Base_DepTag);
|
|
data = insertBits(data, top_bit,
|
|
bottom_bit, Rt);
|
|
xc->setRegOtherThread(RD + FP_Base_DepTag,
|
|
data);
|
|
}});
|
|
0x3: cttc1({{
|
|
uint32_t data;
|
|
switch (RD) {
|
|
case 25:
|
|
data = (Rt.uw<7:1> << 25) | // move 31-25
|
|
(FCSR & 0x01000000) | // bit 24
|
|
(FCSR & 0x004FFFFF); // bit 22-0
|
|
break;
|
|
case 26:
|
|
data = (FCSR & 0xFFFC0000) | // move 31-18
|
|
Rt.uw<17:12> << 12 | // bit 17-12
|
|
(FCSR & 0x00000F80) << 7 | // bit 11-7
|
|
Rt.uw<6:2> << 2 | // bit 6-2
|
|
(FCSR & 0x00000002); // bit 1...0
|
|
break;
|
|
case 28:
|
|
data = (FCSR & 0xFE000000) | // move 31-25
|
|
Rt.uw<2:2> << 24 | // bit 24
|
|
(FCSR & 0x00FFF000) << 23 | // bit 23-12
|
|
Rt.uw<11:7> << 7 | // bit 24
|
|
(FCSR & 0x000007E) |
|
|
Rt.uw<1:0>; // bit 22-0
|
|
break;
|
|
case 31:
|
|
data = Rt.uw;
|
|
break;
|
|
default:
|
|
panic("FP Control Value (%d) "
|
|
"Not Available. Ignoring "
|
|
"Access to Floating Control "
|
|
"Status Register", FS);
|
|
}
|
|
xc->setRegOtherThread(FLOATREG_FCSR + FP_Base_DepTag, data);
|
|
}});
|
|
default: CP0Unimpl::unknown();
|
|
}
|
|
}
|
|
}
|
|
0xB: decode RD {
|
|
format MT_Control {
|
|
0x0: decode POS {
|
|
0x0: decode SEL {
|
|
0x1: decode SC {
|
|
0x0: dvpe({{
|
|
MVPControlReg mvpControl = MVPControl;
|
|
VPEConf0Reg vpeConf0 = VPEConf0;
|
|
Rt = MVPControl;
|
|
if (vpeConf0.mvp == 1)
|
|
mvpControl.evp = 0;
|
|
MVPControl = mvpControl;
|
|
}});
|
|
0x1: evpe({{
|
|
MVPControlReg mvpControl = MVPControl;
|
|
VPEConf0Reg vpeConf0 = VPEConf0;
|
|
Rt = MVPControl;
|
|
if (vpeConf0.mvp == 1)
|
|
mvpControl.evp = 1;
|
|
MVPControl = mvpControl;
|
|
}});
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
0x1: decode POS {
|
|
0xF: decode SEL {
|
|
0x1: decode SC {
|
|
0x0: dmt({{
|
|
VPEControlReg vpeControl = VPEControl;
|
|
Rt = vpeControl;
|
|
vpeControl.te = 0;
|
|
VPEControl = vpeControl;
|
|
}});
|
|
0x1: emt({{
|
|
VPEControlReg vpeControl = VPEControl;
|
|
Rt = vpeControl;
|
|
vpeControl.te = 1;
|
|
VPEControl = vpeControl;
|
|
}});
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
}
|
|
0xC: decode POS {
|
|
0x0: decode SC {
|
|
0x0: CP0Control::di({{
|
|
StatusReg status = Status;
|
|
ConfigReg config = Config;
|
|
// Rev 2.0 or beyond?
|
|
if (config.ar >= 1) {
|
|
Rt = status;
|
|
status.ie = 0;
|
|
} else {
|
|
// Enable this else branch once we
|
|
// actually set values for Config on init
|
|
fault = new ReservedInstructionFault();
|
|
}
|
|
Status = status;
|
|
}});
|
|
0x1: CP0Control::ei({{
|
|
StatusReg status = Status;
|
|
ConfigReg config = Config;
|
|
if (config.ar >= 1) {
|
|
Rt = status;
|
|
status.ie = 1;
|
|
} else {
|
|
fault = new ReservedInstructionFault();
|
|
}
|
|
}});
|
|
default:CP0Unimpl::unknown();
|
|
}
|
|
}
|
|
default: CP0Unimpl::unknown();
|
|
}
|
|
format CP0Control {
|
|
0xA: rdpgpr({{
|
|
ConfigReg config = Config;
|
|
if (config.ar >= 1) {
|
|
// Rev 2 of the architecture
|
|
panic("Shadow Sets Not Fully Implemented.\n");
|
|
} else {
|
|
fault = new ReservedInstructionFault();
|
|
}
|
|
}});
|
|
0xE: wrpgpr({{
|
|
ConfigReg config = Config;
|
|
if (config.ar >= 1) {
|
|
// Rev 2 of the architecture
|
|
panic("Shadow Sets Not Fully Implemented.\n");
|
|
} else {
|
|
fault = new ReservedInstructionFault();
|
|
}
|
|
}});
|
|
}
|
|
}
|
|
|
|
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
|
|
0x1: decode FUNCTION {
|
|
format CP0Control {
|
|
0x18: eret({{
|
|
StatusReg status = Status;
|
|
ConfigReg config = Config;
|
|
SRSCtlReg srsCtl = SRSCtl;
|
|
DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
|
|
if (status.erl == 1) {
|
|
status.erl = 0;
|
|
NPC = ErrorEPC;
|
|
// Need to adjust NNPC, otherwise things break
|
|
NNPC = ErrorEPC + sizeof(MachInst);
|
|
} else {
|
|
NPC = EPC;
|
|
// Need to adjust NNPC, otherwise things break
|
|
NNPC = EPC + sizeof(MachInst);
|
|
status.exl = 0;
|
|
if (config.ar >=1 &&
|
|
srsCtl.hss > 0 &&
|
|
status.bev == 0) {
|
|
srsCtl.css = srsCtl.pss;
|
|
//xc->setShadowSet(srsCtl.pss);
|
|
}
|
|
}
|
|
LLFlag = 0;
|
|
Status = status;
|
|
SRSCtl = srsCtl;
|
|
}}, IsReturn, IsSerializing, IsERET);
|
|
|
|
0x1F: deret({{
|
|
DebugReg debug = Debug;
|
|
if (debug.dm == 1) {
|
|
debug.dm = 1;
|
|
debug.iexi = 0;
|
|
NPC = DEPC;
|
|
} else {
|
|
NPC = NPC;
|
|
// Undefined;
|
|
}
|
|
Debug = debug;
|
|
}}, IsReturn, IsSerializing, IsERET);
|
|
}
|
|
format CP0TLB {
|
|
0x01: tlbr({{
|
|
MipsISA::PTE *PTEntry =
|
|
xc->tcBase()->getITBPtr()->
|
|
getEntry(Index & 0x7FFFFFFF);
|
|
if (PTEntry == NULL) {
|
|
fatal("Invalid PTE Entry received on "
|
|
"a TLBR instruction\n");
|
|
}
|
|
/* Setup PageMask */
|
|
// If 1KB pages are not enabled, a read of PageMask
|
|
// must return 0b00 in bits 12, 11
|
|
PageMask = (PTEntry->Mask << 11);
|
|
/* Setup EntryHi */
|
|
EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
|
|
/* Setup Entry Lo0 */
|
|
EntryLo0 = ((PTEntry->PFN0 << 6) |
|
|
(PTEntry->C0 << 3) |
|
|
(PTEntry->D0 << 2) |
|
|
(PTEntry->V0 << 1) |
|
|
PTEntry->G);
|
|
/* Setup Entry Lo1 */
|
|
EntryLo1 = ((PTEntry->PFN1 << 6) |
|
|
(PTEntry->C1 << 3) |
|
|
(PTEntry->D1 << 2) |
|
|
(PTEntry->V1 << 1) |
|
|
PTEntry->G);
|
|
}}); // Need to hook up to TLB
|
|
|
|
0x02: tlbwi({{
|
|
//Create PTE
|
|
MipsISA::PTE newEntry;
|
|
//Write PTE
|
|
newEntry.Mask = (Addr)(PageMask >> 11);
|
|
newEntry.VPN = (Addr)(EntryHi >> 11);
|
|
/* PageGrain _ ESP Config3 _ SP */
|
|
if (bits(PageGrain, 28) == 0 || bits(Config3, 4) ==0) {
|
|
// If 1KB pages are *NOT* enabled, lowest bits of
|
|
// the mask are 0b11 for TLB writes
|
|
newEntry.Mask |= 0x3;
|
|
// Reset bits 0 and 1 if 1KB pages are not enabled
|
|
newEntry.VPN &= 0xFFFFFFFC;
|
|
}
|
|
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
|
|
|
|
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
|
|
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
|
|
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
|
|
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
|
|
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
|
|
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
|
|
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
|
|
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
|
|
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
|
|
/* Now, compute the AddrShiftAmount and OffsetMask -
|
|
TLB optimizations */
|
|
/* Addr Shift Amount for 1KB or larger pages */
|
|
if ((newEntry.Mask & 0xFFFF) == 3) {
|
|
newEntry.AddrShiftAmount = 12;
|
|
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
|
|
newEntry.AddrShiftAmount = 10;
|
|
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
|
|
newEntry.AddrShiftAmount = 14;
|
|
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
|
|
newEntry.AddrShiftAmount = 16;
|
|
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
|
|
newEntry.AddrShiftAmount = 18;
|
|
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
|
|
newEntry.AddrShiftAmount = 20;
|
|
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
|
|
newEntry.AddrShiftAmount = 22;
|
|
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
|
|
newEntry.AddrShiftAmount = 24;
|
|
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
|
|
newEntry.AddrShiftAmount = 26;
|
|
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
|
|
newEntry.AddrShiftAmount = 28;
|
|
} else {
|
|
fatal("Invalid Mask Pattern Detected!\n");
|
|
}
|
|
newEntry.OffsetMask =
|
|
(1 << newEntry.AddrShiftAmount) - 1;
|
|
|
|
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
|
|
Config3Reg config3 = Config3;
|
|
PageGrainReg pageGrain = PageGrain;
|
|
int SP = 0;
|
|
if (bits(config3, config3.sp) == 1 &&
|
|
bits(pageGrain, pageGrain.esp) == 1) {
|
|
SP = 1;
|
|
}
|
|
IndexReg index = Index;
|
|
Ptr->insertAt(newEntry, Index & 0x7FFFFFFF, SP);
|
|
}});
|
|
0x06: tlbwr({{
|
|
//Create PTE
|
|
MipsISA::PTE newEntry;
|
|
//Write PTE
|
|
newEntry.Mask = (Addr)(PageMask >> 11);
|
|
newEntry.VPN = (Addr)(EntryHi >> 11);
|
|
/* PageGrain _ ESP Config3 _ SP */
|
|
if (bits(PageGrain, 28) == 0 ||
|
|
bits(Config3, 4) == 0) {
|
|
// If 1KB pages are *NOT* enabled, lowest bits of
|
|
// the mask are 0b11 for TLB writes
|
|
newEntry.Mask |= 0x3;
|
|
// Reset bits 0 and 1 if 1KB pages are not enabled
|
|
newEntry.VPN &= 0xFFFFFFFC;
|
|
}
|
|
newEntry.asid = (uint8_t)(EntryHi & 0xFF);
|
|
|
|
newEntry.PFN0 = (Addr)(EntryLo0 >> 6);
|
|
newEntry.PFN1 = (Addr)(EntryLo1 >> 6);
|
|
newEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
|
|
newEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
|
|
newEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
|
|
newEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
|
|
newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
|
|
newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
|
|
newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
|
|
/* Now, compute the AddrShiftAmount and OffsetMask -
|
|
TLB optimizations */
|
|
/* Addr Shift Amount for 1KB or larger pages */
|
|
if ((newEntry.Mask & 0xFFFF) == 3){
|
|
newEntry.AddrShiftAmount = 12;
|
|
} else if ((newEntry.Mask & 0xFFFF) == 0x0000) {
|
|
newEntry.AddrShiftAmount = 10;
|
|
} else if ((newEntry.Mask & 0xFFFC) == 0x000C) {
|
|
newEntry.AddrShiftAmount = 14;
|
|
} else if ((newEntry.Mask & 0xFFF0) == 0x0030) {
|
|
newEntry.AddrShiftAmount = 16;
|
|
} else if ((newEntry.Mask & 0xFFC0) == 0x00C0) {
|
|
newEntry.AddrShiftAmount = 18;
|
|
} else if ((newEntry.Mask & 0xFF00) == 0x0300) {
|
|
newEntry.AddrShiftAmount = 20;
|
|
} else if ((newEntry.Mask & 0xFC00) == 0x0C00) {
|
|
newEntry.AddrShiftAmount = 22;
|
|
} else if ((newEntry.Mask & 0xF000) == 0x3000) {
|
|
newEntry.AddrShiftAmount = 24;
|
|
} else if ((newEntry.Mask & 0xC000) == 0xC000) {
|
|
newEntry.AddrShiftAmount = 26;
|
|
} else if ((newEntry.Mask & 0x30000) == 0x30000) {
|
|
newEntry.AddrShiftAmount = 28;
|
|
} else {
|
|
fatal("Invalid Mask Pattern Detected!\n");
|
|
}
|
|
newEntry.OffsetMask =
|
|
(1 << newEntry.AddrShiftAmount) - 1;
|
|
|
|
MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
|
|
Config3Reg config3 = Config3;
|
|
PageGrainReg pageGrain = PageGrain;
|
|
int SP = 0;
|
|
if (bits(config3, config3.sp) == 1 &&
|
|
bits(pageGrain, pageGrain.esp) == 1) {
|
|
SP = 1;
|
|
}
|
|
IndexReg index = Index;
|
|
Ptr->insertAt(newEntry, Random, SP);
|
|
}});
|
|
|
|
0x08: tlbp({{
|
|
Config3Reg config3 = Config3;
|
|
PageGrainReg pageGrain = PageGrain;
|
|
EntryHiReg entryHi = EntryHi;
|
|
int tlbIndex;
|
|
Addr vpn;
|
|
if (pageGrain.esp == 1 && config3.sp ==1) {
|
|
vpn = EntryHi >> 11;
|
|
} else {
|
|
// Mask off lower 2 bits
|
|
vpn = ((EntryHi >> 11) & 0xFFFFFFFC);
|
|
}
|
|
tlbIndex = xc->tcBase()->getITBPtr()->
|
|
probeEntry(vpn, entryHi.asid);
|
|
// Check TLB for entry matching EntryHi
|
|
if (tlbIndex != -1) {
|
|
Index = tlbIndex;
|
|
} else {
|
|
// else, set Index = 1 << 31
|
|
Index = (1 << 31);
|
|
}
|
|
}});
|
|
}
|
|
format CP0Unimpl {
|
|
0x20: wait();
|
|
}
|
|
default: CP0Unimpl::unknown();
|
|
}
|
|
}
|
|
|
|
//Table A-13 MIPS32 COP1 Encoding of rs Field
|
|
0x1: decode RS_MSB {
|
|
0x0: decode RS_HI {
|
|
0x0: decode RS_LO {
|
|
format CP1Control {
|
|
0x0: mfc1 ({{ Rt.uw = Fs.uw; }});
|
|
|
|
0x2: cfc1({{
|
|
switch (FS) {
|
|
case 0:
|
|
Rt = FIR;
|
|
break;
|
|
case 25:
|
|
Rt = (FCSR & 0xFE000000) >> 24 |
|
|
(FCSR & 0x00800000) >> 23;
|
|
break;
|
|
case 26:
|
|
Rt = (FCSR & 0x0003F07C);
|
|
break;
|
|
case 28:
|
|
Rt = (FCSR & 0x00000F80) |
|
|
(FCSR & 0x01000000) >> 21 |
|
|
(FCSR & 0x00000003);
|
|
break;
|
|
case 31:
|
|
Rt = FCSR;
|
|
break;
|
|
default:
|
|
warn("FP Control Value (%d) Not Valid");
|
|
}
|
|
}});
|
|
|
|
0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>; }});
|
|
|
|
0x4: mtc1({{ Fs.uw = Rt.uw; }});
|
|
|
|
0x6: ctc1({{
|
|
switch (FS) {
|
|
case 25:
|
|
FCSR = (Rt.uw<7:1> << 25) | // move 31-25
|
|
(FCSR & 0x01000000) | // bit 24
|
|
(FCSR & 0x004FFFFF); // bit 22-0
|
|
break;
|
|
case 26:
|
|
FCSR = (FCSR & 0xFFFC0000) | // move 31-18
|
|
Rt.uw<17:12> << 12 | // bit 17-12
|
|
(FCSR & 0x00000F80) << 7 | // bit 11-7
|
|
Rt.uw<6:2> << 2 | // bit 6-2
|
|
(FCSR & 0x00000002); // bit 1-0
|
|
break;
|
|
case 28:
|
|
FCSR = (FCSR & 0xFE000000) | // move 31-25
|
|
Rt.uw<2:2> << 24 | // bit 24
|
|
(FCSR & 0x00FFF000) << 23 | // bit 23-12
|
|
Rt.uw<11:7> << 7 | // bit 24
|
|
(FCSR & 0x000007E) |
|
|
Rt.uw<1:0>; // bit 22-0
|
|
break;
|
|
case 31:
|
|
FCSR = Rt.uw;
|
|
break;
|
|
|
|
default:
|
|
panic("FP Control Value (%d) "
|
|
"Not Available. Ignoring Access "
|
|
"to Floating Control Status "
|
|
"Register", FS);
|
|
}
|
|
}});
|
|
|
|
0x7: mthc1({{
|
|
uint64_t fs_hi = Rt.uw;
|
|
uint64_t fs_lo = Fs.ud & 0x0FFFFFFFF;
|
|
Fs.ud = (fs_hi << 32) | fs_lo;
|
|
}});
|
|
|
|
}
|
|
format CP1Unimpl {
|
|
0x1: dmfc1();
|
|
0x5: dmtc1();
|
|
}
|
|
}
|
|
|
|
0x1: decode RS_LO {
|
|
0x0: decode ND {
|
|
format Branch {
|
|
0x0: decode TF {
|
|
0x0: bc1f({{
|
|
cond = getCondCode(FCSR, BRANCH_CC) == 0;
|
|
}});
|
|
0x1: bc1t({{
|
|
cond = getCondCode(FCSR, BRANCH_CC) == 1;
|
|
}});
|
|
}
|
|
0x1: decode TF {
|
|
0x0: bc1fl({{
|
|
cond = getCondCode(FCSR, BRANCH_CC) == 0;
|
|
}}, Likely);
|
|
0x1: bc1tl({{
|
|
cond = getCondCode(FCSR, BRANCH_CC) == 1;
|
|
}}, Likely);
|
|
}
|
|
}
|
|
}
|
|
format CP1Unimpl {
|
|
0x1: bc1any2();
|
|
0x2: bc1any4();
|
|
default: unknown();
|
|
}
|
|
}
|
|
}
|
|
|
|
0x1: decode RS_HI {
|
|
0x2: decode RS_LO {
|
|
//Table A-14 MIPS32 COP1 Encoding of Function Field When
|
|
//rs=S (( single-precision floating point))
|
|
0x0: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
format FloatOp {
|
|
0x0: add_s({{ Fd.sf = Fs.sf + Ft.sf; }});
|
|
0x1: sub_s({{ Fd.sf = Fs.sf - Ft.sf; }});
|
|
0x2: mul_s({{ Fd.sf = Fs.sf * Ft.sf; }});
|
|
0x3: div_s({{ Fd.sf = Fs.sf / Ft.sf; }});
|
|
0x4: sqrt_s({{ Fd.sf = sqrt(Fs.sf); }});
|
|
0x5: abs_s({{ Fd.sf = fabs(Fs.sf); }});
|
|
0x7: neg_s({{ Fd.sf = -Fs.sf; }});
|
|
}
|
|
0x6: BasicOp::mov_s({{ Fd.sf = Fs.sf; }});
|
|
}
|
|
0x1: decode FUNCTION_LO {
|
|
format FloatConvertOp {
|
|
0x0: round_l_s({{ val = Fs.sf; }},
|
|
ToLong, Round);
|
|
0x1: trunc_l_s({{ val = Fs.sf; }},
|
|
ToLong, Trunc);
|
|
0x2: ceil_l_s({{ val = Fs.sf;}},
|
|
ToLong, Ceil);
|
|
0x3: floor_l_s({{ val = Fs.sf; }},
|
|
ToLong, Floor);
|
|
0x4: round_w_s({{ val = Fs.sf; }},
|
|
ToWord, Round);
|
|
0x5: trunc_w_s({{ val = Fs.sf; }},
|
|
ToWord, Trunc);
|
|
0x6: ceil_w_s({{ val = Fs.sf; }},
|
|
ToWord, Ceil);
|
|
0x7: floor_w_s({{ val = Fs.sf; }},
|
|
ToWord, Floor);
|
|
}
|
|
}
|
|
|
|
0x2: decode FUNCTION_LO {
|
|
0x1: decode MOVCF {
|
|
format BasicOp {
|
|
0x0: movf_s({{
|
|
Fd = (getCondCode(FCSR,CC) == 0) ?
|
|
Fs : Fd;
|
|
}});
|
|
0x1: movt_s({{
|
|
Fd = (getCondCode(FCSR,CC) == 1) ?
|
|
Fs : Fd;
|
|
}});
|
|
}
|
|
}
|
|
|
|
format BasicOp {
|
|
0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
|
|
0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
|
|
}
|
|
|
|
format FloatOp {
|
|
0x5: recip_s({{ Fd = 1 / Fs; }});
|
|
0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs); }});
|
|
}
|
|
format CP1Unimpl {
|
|
default: unknown();
|
|
}
|
|
}
|
|
0x3: CP1Unimpl::unknown();
|
|
|
|
0x4: decode FUNCTION_LO {
|
|
format FloatConvertOp {
|
|
0x1: cvt_d_s({{ val = Fs.sf; }}, ToDouble);
|
|
0x4: cvt_w_s({{ val = Fs.sf; }}, ToWord);
|
|
0x5: cvt_l_s({{ val = Fs.sf; }}, ToLong);
|
|
}
|
|
|
|
0x6: FloatOp::cvt_ps_s({{
|
|
Fd.ud = (uint64_t) Fs.uw << 32 |
|
|
(uint64_t) Ft.uw;
|
|
}});
|
|
format CP1Unimpl {
|
|
default: unknown();
|
|
}
|
|
}
|
|
0x5: CP1Unimpl::unknown();
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
format FloatCompareOp {
|
|
0x0: c_f_s({{ cond = 0; }},
|
|
SinglePrecision, UnorderedFalse);
|
|
0x1: c_un_s({{ cond = 0; }},
|
|
SinglePrecision, UnorderedTrue);
|
|
0x2: c_eq_s({{ cond = (Fs.sf == Ft.sf); }},
|
|
UnorderedFalse);
|
|
0x3: c_ueq_s({{ cond = (Fs.sf == Ft.sf); }},
|
|
UnorderedTrue);
|
|
0x4: c_olt_s({{ cond = (Fs.sf < Ft.sf); }},
|
|
UnorderedFalse);
|
|
0x5: c_ult_s({{ cond = (Fs.sf < Ft.sf); }},
|
|
UnorderedTrue);
|
|
0x6: c_ole_s({{ cond = (Fs.sf <= Ft.sf); }},
|
|
UnorderedFalse);
|
|
0x7: c_ule_s({{ cond = (Fs.sf <= Ft.sf); }},
|
|
UnorderedTrue);
|
|
}
|
|
}
|
|
|
|
0x7: decode FUNCTION_LO {
|
|
format FloatCompareOp {
|
|
0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
|
|
UnorderedFalse, QnanException);
|
|
0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
|
|
UnorderedTrue, QnanException);
|
|
0x2: c_seq_s({{ cond = (Fs.sf == Ft.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x3: c_ngl_s({{ cond = (Fs.sf == Ft.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
0x4: c_lt_s({{ cond = (Fs.sf < Ft.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x5: c_nge_s({{ cond = (Fs.sf < Ft.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
0x6: c_le_s({{ cond = (Fs.sf <= Ft.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x7: c_ngt_s({{ cond = (Fs.sf <= Ft.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table A-15 MIPS32 COP1 Encoding of Function Field When
|
|
//rs=D
|
|
0x1: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
format FloatOp {
|
|
0x0: add_d({{ Fd.df = Fs.df + Ft.df; }});
|
|
0x1: sub_d({{ Fd.df = Fs.df - Ft.df; }});
|
|
0x2: mul_d({{ Fd.df = Fs.df * Ft.df; }});
|
|
0x3: div_d({{ Fd.df = Fs.df / Ft.df; }});
|
|
0x4: sqrt_d({{ Fd.df = sqrt(Fs.df); }});
|
|
0x5: abs_d({{ Fd.df = fabs(Fs.df); }});
|
|
0x7: neg_d({{ Fd.df = -1 * Fs.df; }});
|
|
}
|
|
0x6: BasicOp::mov_d({{ Fd.df = Fs.df; }});
|
|
}
|
|
|
|
0x1: decode FUNCTION_LO {
|
|
format FloatConvertOp {
|
|
0x0: round_l_d({{ val = Fs.df; }},
|
|
ToLong, Round);
|
|
0x1: trunc_l_d({{ val = Fs.df; }},
|
|
ToLong, Trunc);
|
|
0x2: ceil_l_d({{ val = Fs.df; }},
|
|
ToLong, Ceil);
|
|
0x3: floor_l_d({{ val = Fs.df; }},
|
|
ToLong, Floor);
|
|
0x4: round_w_d({{ val = Fs.df; }},
|
|
ToWord, Round);
|
|
0x5: trunc_w_d({{ val = Fs.df; }},
|
|
ToWord, Trunc);
|
|
0x6: ceil_w_d({{ val = Fs.df; }},
|
|
ToWord, Ceil);
|
|
0x7: floor_w_d({{ val = Fs.df; }},
|
|
ToWord, Floor);
|
|
}
|
|
}
|
|
|
|
0x2: decode FUNCTION_LO {
|
|
0x1: decode MOVCF {
|
|
format BasicOp {
|
|
0x0: movf_d({{
|
|
Fd.df = (getCondCode(FCSR,CC) == 0) ?
|
|
Fs.df : Fd.df;
|
|
}});
|
|
0x1: movt_d({{
|
|
Fd.df = (getCondCode(FCSR,CC) == 1) ?
|
|
Fs.df : Fd.df;
|
|
}});
|
|
}
|
|
}
|
|
|
|
format BasicOp {
|
|
0x2: movz_d({{
|
|
Fd.df = (Rt == 0) ? Fs.df : Fd.df;
|
|
}});
|
|
0x3: movn_d({{
|
|
Fd.df = (Rt != 0) ? Fs.df : Fd.df;
|
|
}});
|
|
}
|
|
|
|
format FloatOp {
|
|
0x5: recip_d({{ Fd.df = 1 / Fs.df; }});
|
|
0x6: rsqrt_d({{ Fd.df = 1 / sqrt(Fs.df); }});
|
|
}
|
|
format CP1Unimpl {
|
|
default: unknown();
|
|
}
|
|
|
|
}
|
|
0x4: decode FUNCTION_LO {
|
|
format FloatConvertOp {
|
|
0x0: cvt_s_d({{ val = Fs.df; }}, ToSingle);
|
|
0x4: cvt_w_d({{ val = Fs.df; }}, ToWord);
|
|
0x5: cvt_l_d({{ val = Fs.df; }}, ToLong);
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
format FloatCompareOp {
|
|
0x0: c_f_d({{ cond = 0; }},
|
|
DoublePrecision, UnorderedFalse);
|
|
0x1: c_un_d({{ cond = 0; }},
|
|
DoublePrecision, UnorderedTrue);
|
|
0x2: c_eq_d({{ cond = (Fs.df == Ft.df); }},
|
|
UnorderedFalse);
|
|
0x3: c_ueq_d({{ cond = (Fs.df == Ft.df); }},
|
|
UnorderedTrue);
|
|
0x4: c_olt_d({{ cond = (Fs.df < Ft.df); }},
|
|
UnorderedFalse);
|
|
0x5: c_ult_d({{ cond = (Fs.df < Ft.df); }},
|
|
UnorderedTrue);
|
|
0x6: c_ole_d({{ cond = (Fs.df <= Ft.df); }},
|
|
UnorderedFalse);
|
|
0x7: c_ule_d({{ cond = (Fs.df <= Ft.df); }},
|
|
UnorderedTrue);
|
|
}
|
|
}
|
|
|
|
0x7: decode FUNCTION_LO {
|
|
format FloatCompareOp {
|
|
0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
|
|
UnorderedFalse, QnanException);
|
|
0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
|
|
UnorderedTrue, QnanException);
|
|
0x2: c_seq_d({{ cond = (Fs.df == Ft.df); }},
|
|
UnorderedFalse, QnanException);
|
|
0x3: c_ngl_d({{ cond = (Fs.df == Ft.df); }},
|
|
UnorderedTrue, QnanException);
|
|
0x4: c_lt_d({{ cond = (Fs.df < Ft.df); }},
|
|
UnorderedFalse, QnanException);
|
|
0x5: c_nge_d({{ cond = (Fs.df < Ft.df); }},
|
|
UnorderedTrue, QnanException);
|
|
0x6: c_le_d({{ cond = (Fs.df <= Ft.df); }},
|
|
UnorderedFalse, QnanException);
|
|
0x7: c_ngt_d({{ cond = (Fs.df <= Ft.df); }},
|
|
UnorderedTrue, QnanException);
|
|
}
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
0x2: CP1Unimpl::unknown();
|
|
0x3: CP1Unimpl::unknown();
|
|
0x7: CP1Unimpl::unknown();
|
|
|
|
//Table A-16 MIPS32 COP1 Encoding of Function
|
|
//Field When rs=W
|
|
0x4: decode FUNCTION {
|
|
format FloatConvertOp {
|
|
0x20: cvt_s_w({{ val = Fs.uw; }}, ToSingle);
|
|
0x21: cvt_d_w({{ val = Fs.uw; }}, ToDouble);
|
|
0x26: CP1Unimpl::cvt_ps_w();
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
|
|
//Table A-16 MIPS32 COP1 Encoding of Function Field
|
|
//When rs=L1
|
|
//Note: "1. Format type L is legal only if 64-bit
|
|
//floating point operations are enabled."
|
|
0x5: decode FUNCTION_HI {
|
|
format FloatConvertOp {
|
|
0x20: cvt_s_l({{ val = Fs.ud; }}, ToSingle);
|
|
0x21: cvt_d_l({{ val = Fs.ud; }}, ToDouble);
|
|
0x26: CP1Unimpl::cvt_ps_l();
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
|
|
//Table A-17 MIPS64 COP1 Encoding of Function Field
|
|
//When rs=PS1
|
|
//Note: "1. Format type PS is legal only if 64-bit
|
|
//floating point operations are enabled. "
|
|
0x6: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
format Float64Op {
|
|
0x0: add_ps({{
|
|
Fd1.sf = Fs1.sf + Ft2.sf;
|
|
Fd2.sf = Fs2.sf + Ft2.sf;
|
|
}});
|
|
0x1: sub_ps({{
|
|
Fd1.sf = Fs1.sf - Ft2.sf;
|
|
Fd2.sf = Fs2.sf - Ft2.sf;
|
|
}});
|
|
0x2: mul_ps({{
|
|
Fd1.sf = Fs1.sf * Ft2.sf;
|
|
Fd2.sf = Fs2.sf * Ft2.sf;
|
|
}});
|
|
0x5: abs_ps({{
|
|
Fd1.sf = fabs(Fs1.sf);
|
|
Fd2.sf = fabs(Fs2.sf);
|
|
}});
|
|
0x6: mov_ps({{
|
|
Fd1.sf = Fs1.sf;
|
|
Fd2.sf = Fs2.sf;
|
|
}});
|
|
0x7: neg_ps({{
|
|
Fd1.sf = -(Fs1.sf);
|
|
Fd2.sf = -(Fs2.sf);
|
|
}});
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
}
|
|
0x1: CP1Unimpl::unknown();
|
|
0x2: decode FUNCTION_LO {
|
|
0x1: decode MOVCF {
|
|
format Float64Op {
|
|
0x0: movf_ps({{
|
|
Fd1 = (getCondCode(FCSR, CC) == 0) ?
|
|
Fs1 : Fd1;
|
|
Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
|
|
Fs2 : Fd2;
|
|
}});
|
|
0x1: movt_ps({{
|
|
Fd2 = (getCondCode(FCSR, CC) == 1) ?
|
|
Fs1 : Fd1;
|
|
Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
|
|
Fs2 : Fd2;
|
|
}});
|
|
}
|
|
}
|
|
|
|
format Float64Op {
|
|
0x2: movz_ps({{
|
|
Fd1 = (getCondCode(FCSR, CC) == 0) ?
|
|
Fs1 : Fd1;
|
|
Fd2 = (getCondCode(FCSR, CC) == 0) ?
|
|
Fs2 : Fd2;
|
|
}});
|
|
0x3: movn_ps({{
|
|
Fd1 = (getCondCode(FCSR, CC) == 1) ?
|
|
Fs1 : Fd1;
|
|
Fd2 = (getCondCode(FCSR, CC) == 1) ?
|
|
Fs2 : Fd2;
|
|
}});
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
0x3: CP1Unimpl::unknown();
|
|
0x4: decode FUNCTION_LO {
|
|
0x0: FloatOp::cvt_s_pu({{ Fd.sf = Fs2.sf; }});
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
|
|
0x5: decode FUNCTION_LO {
|
|
0x0: FloatOp::cvt_s_pl({{ Fd.sf = Fs1.sf; }});
|
|
format Float64Op {
|
|
0x4: pll({{
|
|
Fd.ud = (uint64_t)Fs1.uw << 32 | Ft1.uw;
|
|
}});
|
|
0x5: plu({{
|
|
Fd.ud = (uint64_t)Fs1.uw << 32 | Ft2.uw;
|
|
}});
|
|
0x6: pul({{
|
|
Fd.ud = (uint64_t)Fs2.uw << 32 | Ft1.uw;
|
|
}});
|
|
0x7: puu({{
|
|
Fd.ud = (uint64_t)Fs2.uw << 32 | Ft2.uw;
|
|
}});
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
format FloatPSCompareOp {
|
|
0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
|
|
UnorderedFalse);
|
|
0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
|
|
UnorderedTrue);
|
|
0x2: c_eq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf == Ft2.sf); }},
|
|
UnorderedFalse);
|
|
0x3: c_ueq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf == Ft2.sf); }},
|
|
UnorderedTrue);
|
|
0x4: c_olt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf < Ft2.sf); }},
|
|
UnorderedFalse);
|
|
0x5: c_ult_ps({{ cond1 = (Fs.sf < Ft.sf); }},
|
|
{{ cond2 = (Fs2.sf < Ft2.sf); }},
|
|
UnorderedTrue);
|
|
0x6: c_ole_ps({{ cond1 = (Fs.sf <= Ft.sf); }},
|
|
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
|
|
UnorderedFalse);
|
|
0x7: c_ule_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
|
|
UnorderedTrue);
|
|
}
|
|
}
|
|
|
|
0x7: decode FUNCTION_LO {
|
|
format FloatPSCompareOp {
|
|
0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
|
|
UnorderedFalse, QnanException);
|
|
0x1: c_ngle_ps({{ cond1 = 0; }},
|
|
{{ cond2 = 0; }},
|
|
UnorderedTrue, QnanException);
|
|
0x2: c_seq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf == Ft2.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x3: c_ngl_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf == Ft2.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
0x4: c_lt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf < Ft2.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x5: c_nge_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf < Ft2.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
0x6: c_le_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
|
|
UnorderedFalse, QnanException);
|
|
0x7: c_ngt_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
|
|
{{ cond2 = (Fs2.sf <= Ft2.sf); }},
|
|
UnorderedTrue, QnanException);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default: CP1Unimpl::unknown();
|
|
}
|
|
}
|
|
|
|
//Table A-19 MIPS32 COP2 Encoding of rs Field
|
|
0x2: decode RS_MSB {
|
|
format CP2Unimpl {
|
|
0x0: decode RS_HI {
|
|
0x0: decode RS_LO {
|
|
0x0: mfc2();
|
|
0x2: cfc2();
|
|
0x3: mfhc2();
|
|
0x4: mtc2();
|
|
0x6: ctc2();
|
|
0x7: mftc2();
|
|
default: unknown();
|
|
}
|
|
|
|
0x1: decode ND {
|
|
0x0: decode TF {
|
|
0x0: bc2f();
|
|
0x1: bc2t();
|
|
default: unknown();
|
|
}
|
|
|
|
0x1: decode TF {
|
|
0x0: bc2fl();
|
|
0x1: bc2tl();
|
|
default: unknown();
|
|
}
|
|
default: unknown();
|
|
|
|
}
|
|
default: unknown();
|
|
}
|
|
default: unknown();
|
|
}
|
|
}
|
|
|
|
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
|
|
//Note: "COP1X instructions are legal only if 64-bit floating point
|
|
//operations are enabled."
|
|
0x3: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
format LoadIndexedMemory {
|
|
0x0: lwxc1({{ Fd.uw = Mem.uw; }});
|
|
0x1: ldxc1({{ Fd.ud = Mem.ud; }});
|
|
0x5: luxc1({{ Fd.ud = Mem.ud; }},
|
|
{{ EA = (Rs + Rt) & ~7; }});
|
|
}
|
|
}
|
|
|
|
0x1: decode FUNCTION_LO {
|
|
format StoreIndexedMemory {
|
|
0x0: swxc1({{ Mem.uw = Fs.uw; }});
|
|
0x1: sdxc1({{ Mem.ud = Fs.ud; }});
|
|
0x5: suxc1({{ Mem.ud = Fs.ud; }},
|
|
{{ EA = (Rs + Rt) & ~7; }});
|
|
}
|
|
0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
|
|
}
|
|
|
|
0x3: decode FUNCTION_LO {
|
|
0x6: Float64Op::alnv_ps({{
|
|
if (Rs<2:0> == 0) {
|
|
Fd.ud = Fs.ud;
|
|
} else if (Rs<2:0> == 4) {
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
Fd.ud = Fs.ud<31:0> << 32 | Ft.ud<63:32>;
|
|
#elif BYTE_ORDER == LITTLE_ENDIAN
|
|
Fd.ud = Ft.ud<31:0> << 32 | Fs.ud<63:32>;
|
|
#endif
|
|
} else {
|
|
Fd.ud = Fd.ud;
|
|
}
|
|
}});
|
|
}
|
|
|
|
format FloatAccOp {
|
|
0x4: decode FUNCTION_LO {
|
|
0x0: madd_s({{ Fd.sf = (Fs.sf * Ft.sf) + Fr.sf; }});
|
|
0x1: madd_d({{ Fd.df = (Fs.df * Ft.df) + Fr.df; }});
|
|
0x6: madd_ps({{
|
|
Fd1.sf = (Fs1.df * Ft1.df) + Fr1.df;
|
|
Fd2.sf = (Fs2.df * Ft2.df) + Fr2.df;
|
|
}});
|
|
}
|
|
|
|
0x5: decode FUNCTION_LO {
|
|
0x0: msub_s({{ Fd.sf = (Fs.sf * Ft.sf) - Fr.sf; }});
|
|
0x1: msub_d({{ Fd.df = (Fs.df * Ft.df) - Fr.df; }});
|
|
0x6: msub_ps({{
|
|
Fd1.sf = (Fs1.df * Ft1.df) - Fr1.df;
|
|
Fd2.sf = (Fs2.df * Ft2.df) - Fr2.df;
|
|
}});
|
|
}
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
0x0: nmadd_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
|
|
0x1: nmadd_d({{ Fd.df = (-1 * Fs.df * Ft.df) + Fr.df; }});
|
|
0x6: nmadd_ps({{
|
|
Fd1.sf = -((Fs1.df * Ft1.df) + Fr1.df);
|
|
Fd2.sf = -((Fs2.df * Ft2.df) + Fr2.df);
|
|
}});
|
|
}
|
|
|
|
0x7: decode FUNCTION_LO {
|
|
0x0: nmsub_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
|
|
0x1: nmsub_d({{ Fd.df = (-1 * Fs.df * Ft.df) - Fr.df; }});
|
|
0x6: nmsub_ps({{
|
|
Fd1.sf = -((Fs1.df * Ft1.df) - Fr1.df);
|
|
Fd2.sf = -((Fs2.df * Ft2.df) - Fr2.df);
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
format Branch {
|
|
0x4: beql({{ cond = (Rs.sw == Rt.sw); }}, Likely);
|
|
0x5: bnel({{ cond = (Rs.sw != Rt.sw); }}, Likely);
|
|
0x6: blezl({{ cond = (Rs.sw <= 0); }}, Likely);
|
|
0x7: bgtzl({{ cond = (Rs.sw > 0); }}, Likely);
|
|
}
|
|
}
|
|
|
|
0x3: decode OPCODE_LO {
|
|
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
|
|
0x4: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
0x2: IntOp::mul({{
|
|
int64_t temp1 = Rs.sd * Rt.sd;
|
|
Rd.sw = temp1<31:0>;
|
|
}}, IntMultOp);
|
|
|
|
format HiLoRdSelValOp {
|
|
0x0: madd({{
|
|
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
|
|
(Rs.sd * Rt.sd);
|
|
}}, IntMultOp);
|
|
0x1: maddu({{
|
|
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) +
|
|
(Rs.ud * Rt.ud);
|
|
}}, IntMultOp);
|
|
0x4: msub({{
|
|
val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
|
|
(Rs.sd * Rt.sd);
|
|
}}, IntMultOp);
|
|
0x5: msubu({{
|
|
val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) -
|
|
(Rs.ud * Rt.ud);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
|
|
0x4: decode FUNCTION_LO {
|
|
format BasicOp {
|
|
0x0: clz({{
|
|
int cnt = 32;
|
|
for (int idx = 31; idx >= 0; idx--) {
|
|
if (Rs<idx:idx> == 1) {
|
|
cnt = 31 - idx;
|
|
break;
|
|
}
|
|
}
|
|
Rd.uw = cnt;
|
|
}});
|
|
0x1: clo({{
|
|
int cnt = 32;
|
|
for (int idx = 31; idx >= 0; idx--) {
|
|
if (Rs<idx:idx> == 0) {
|
|
cnt = 31 - idx;
|
|
break;
|
|
}
|
|
}
|
|
Rd.uw = cnt;
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x7: decode FUNCTION_LO {
|
|
0x7: FailUnimpl::sdbbp();
|
|
}
|
|
}
|
|
|
|
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
|
|
//of the Architecture
|
|
0x7: decode FUNCTION_HI {
|
|
0x0: decode FUNCTION_LO {
|
|
format BasicOp {
|
|
0x0: ext({{ Rt.uw = bits(Rs.uw, MSB+LSB, LSB); }});
|
|
0x4: ins({{
|
|
Rt.uw = bits(Rt.uw, 31, MSB+1) << (MSB+1) |
|
|
bits(Rs.uw, MSB-LSB, 0) << LSB |
|
|
bits(Rt.uw, LSB-1, 0);
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x1: decode FUNCTION_LO {
|
|
format MT_Control {
|
|
0x0: fork({{
|
|
forkThread(xc->tcBase(), fault, RD, Rs, Rt);
|
|
}}, UserMode);
|
|
0x1: yield({{
|
|
Rd.sw = yieldThread(xc->tcBase(), fault, Rs.sw,
|
|
YQMask);
|
|
}}, UserMode);
|
|
}
|
|
|
|
//Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
|
|
0x2: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format LoadIndexedMemory {
|
|
0x0: lwx({{ Rd.sw = Mem.sw; }});
|
|
0x4: lhx({{ Rd.sw = Mem.sh; }});
|
|
0x6: lbux({{ Rd.uw = Mem.ub; }});
|
|
}
|
|
}
|
|
}
|
|
0x4: DspIntOp::insv({{
|
|
int pos = dspctl<5:0>;
|
|
int size = dspctl<12:7> - 1;
|
|
Rt.uw = insertBits(Rt.uw, pos+size,
|
|
pos, Rs.uw<size:0>);
|
|
}});
|
|
}
|
|
|
|
0x2: decode FUNCTION_LO {
|
|
|
|
//Table 5-5 MIPS32 ADDU.QB Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x0: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: addu_qb({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x1: subu_qb({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x4: addu_s_qb({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
SATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x5: subu_s_qb({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
SATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x6: muleu_s_ph_qbl({{
|
|
Rd.uw = dspMuleu(Rs.uw, Rt.uw,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x7: muleu_s_ph_qbr({{
|
|
Rd.uw = dspMuleu(Rs.uw, Rt.uw,
|
|
MODE_R, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: addu_ph({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x1: subu_ph({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x2: addq_ph({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
NOSATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x3: subq_ph({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
NOSATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x4: addu_s_ph({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x5: subu_s_ph({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x6: addq_s_ph({{
|
|
Rd.uw = dspAdd(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x7: subq_s_ph({{
|
|
Rd.uw = dspSub(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: addsc({{
|
|
int64_t dresult;
|
|
dresult = Rs.ud + Rt.ud;
|
|
Rd.sw = dresult<31:0>;
|
|
dspctl = insertBits(dspctl, 13, 13,
|
|
dresult<32:32>);
|
|
}});
|
|
0x1: addwc({{
|
|
int64_t dresult;
|
|
dresult = Rs.sd + Rt.sd + dspctl<13:13>;
|
|
Rd.sw = dresult<31:0>;
|
|
if (dresult<32:32> != dresult<31:31>)
|
|
dspctl = insertBits(dspctl, 20, 20, 1);
|
|
}});
|
|
0x2: modsub({{
|
|
Rd.sw = (Rs.sw == 0) ? Rt.sw<23:8> :
|
|
Rs.sw - Rt.sw<7:0>;
|
|
}});
|
|
0x4: raddu_w_qb({{
|
|
Rd.uw = Rs.uw<31:24> + Rs.uw<23:16> +
|
|
Rs.uw<15:8> + Rs.uw<7:0>;
|
|
}});
|
|
0x6: addq_s_w({{
|
|
Rd.sw = dspAdd(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x7: subq_s_w({{
|
|
Rd.sw = dspSub(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
format DspIntOp {
|
|
0x4: muleq_s_w_phl({{
|
|
Rd.sw = dspMuleq(Rs.sw, Rt.sw,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x5: muleq_s_w_phr({{
|
|
Rd.sw = dspMuleq(Rs.sw, Rt.sw,
|
|
MODE_R, &dspctl);
|
|
}}, IntMultOp);
|
|
0x6: mulq_s_ph({{
|
|
Rd.sw = dspMulq(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
SATURATE, NOROUND, &dspctl);
|
|
}}, IntMultOp);
|
|
0x7: mulq_rs_ph({{
|
|
Rd.sw = dspMulq(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
SATURATE, ROUND, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x1: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: cmpu_eq_qb({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_EQ, &dspctl);
|
|
}});
|
|
0x1: cmpu_lt_qb({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LT, &dspctl);
|
|
}});
|
|
0x2: cmpu_le_qb({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LE, &dspctl);
|
|
}});
|
|
0x3: pick_qb({{
|
|
Rd.uw = dspPick(Rs.uw, Rt.uw,
|
|
SIMD_FMT_QB, &dspctl);
|
|
}});
|
|
0x4: cmpgu_eq_qb({{
|
|
Rd.uw = dspCmpg(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_EQ );
|
|
}});
|
|
0x5: cmpgu_lt_qb({{
|
|
Rd.uw = dspCmpg(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LT);
|
|
}});
|
|
0x6: cmpgu_le_qb({{
|
|
Rd.uw = dspCmpg(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LE);
|
|
}});
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: cmp_eq_ph({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SIGNED, CMP_EQ, &dspctl);
|
|
}});
|
|
0x1: cmp_lt_ph({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SIGNED, CMP_LT, &dspctl);
|
|
}});
|
|
0x2: cmp_le_ph({{
|
|
dspCmp(Rs.uw, Rt.uw, SIMD_FMT_PH,
|
|
SIGNED, CMP_LE, &dspctl);
|
|
}});
|
|
0x3: pick_ph({{
|
|
Rd.uw = dspPick(Rs.uw, Rt.uw,
|
|
SIMD_FMT_PH, &dspctl);
|
|
}});
|
|
0x4: precrq_qb_ph({{
|
|
Rd.uw = Rs.uw<31:24> << 24 |
|
|
Rs.uw<15:8> << 16 |
|
|
Rt.uw<31:24> << 8 |
|
|
Rt.uw<15:8>;
|
|
}});
|
|
0x5: precr_qb_ph({{
|
|
Rd.uw = Rs.uw<23:16> << 24 |
|
|
Rs.uw<7:0> << 16 |
|
|
Rt.uw<23:16> << 8 |
|
|
Rt.uw<7:0>;
|
|
}});
|
|
0x6: packrl_ph({{
|
|
Rd.uw = dspPack(Rs.uw, Rt.uw, SIMD_FMT_PH);
|
|
}});
|
|
0x7: precrqu_s_qb_ph({{
|
|
Rd.uw = dspPrecrqu(Rs.uw, Rt.uw, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x4: precrq_ph_w({{
|
|
Rd.uw = Rs.uw<31:16> << 16 | Rt.uw<31:16>;
|
|
}});
|
|
0x5: precrq_rs_ph_w({{
|
|
Rd.uw = dspPrecrq(Rs.uw, Rt.uw,
|
|
SIMD_FMT_W, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: cmpgdu_eq_qb({{
|
|
Rd.uw = dspCmpgd(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_EQ, &dspctl);
|
|
}});
|
|
0x1: cmpgdu_lt_qb({{
|
|
Rd.uw = dspCmpgd(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LT, &dspctl);
|
|
}});
|
|
0x2: cmpgdu_le_qb({{
|
|
Rd.uw = dspCmpgd(Rs.uw, Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, CMP_LE, &dspctl);
|
|
}});
|
|
0x6: precr_sra_ph_w({{
|
|
Rt.uw = dspPrecrSra(Rt.uw, Rs.uw, RD,
|
|
SIMD_FMT_W, NOROUND);
|
|
}});
|
|
0x7: precr_sra_r_ph_w({{
|
|
Rt.uw = dspPrecrSra(Rt.uw, Rs.uw, RD,
|
|
SIMD_FMT_W, ROUND);
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x2: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspIntOp {
|
|
0x1: absq_s_qb({{
|
|
Rd.sw = dspAbs(Rt.sw, SIMD_FMT_QB, &dspctl);
|
|
}});
|
|
0x2: repl_qb({{
|
|
Rd.uw = RS_RT<7:0> << 24 |
|
|
RS_RT<7:0> << 16 |
|
|
RS_RT<7:0> << 8 |
|
|
RS_RT<7:0>;
|
|
}});
|
|
0x3: replv_qb({{
|
|
Rd.sw = Rt.uw<7:0> << 24 |
|
|
Rt.uw<7:0> << 16 |
|
|
Rt.uw<7:0> << 8 |
|
|
Rt.uw<7:0>;
|
|
}});
|
|
0x4: precequ_ph_qbl({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB, UNSIGNED,
|
|
SIMD_FMT_PH, SIGNED, MODE_L);
|
|
}});
|
|
0x5: precequ_ph_qbr({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB, UNSIGNED,
|
|
SIMD_FMT_PH, SIGNED, MODE_R);
|
|
}});
|
|
0x6: precequ_ph_qbla({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB, UNSIGNED,
|
|
SIMD_FMT_PH, SIGNED, MODE_LA);
|
|
}});
|
|
0x7: precequ_ph_qbra({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB, UNSIGNED,
|
|
SIMD_FMT_PH, SIGNED, MODE_RA);
|
|
}});
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspIntOp {
|
|
0x1: absq_s_ph({{
|
|
Rd.sw = dspAbs(Rt.sw, SIMD_FMT_PH, &dspctl);
|
|
}});
|
|
0x2: repl_ph({{
|
|
Rd.uw = (sext<10>(RS_RT))<15:0> << 16 |
|
|
(sext<10>(RS_RT))<15:0>;
|
|
}});
|
|
0x3: replv_ph({{
|
|
Rd.uw = Rt.uw<15:0> << 16 |
|
|
Rt.uw<15:0>;
|
|
}});
|
|
0x4: preceq_w_phl({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_PH, SIGNED,
|
|
SIMD_FMT_W, SIGNED, MODE_L);
|
|
}});
|
|
0x5: preceq_w_phr({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_PH, SIGNED,
|
|
SIMD_FMT_W, SIGNED, MODE_R);
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x1: absq_s_w({{
|
|
Rd.sw = dspAbs(Rt.sw, SIMD_FMT_W, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
0x3: IntOp::bitrev({{
|
|
Rd.uw = bitrev( Rt.uw<15:0> );
|
|
}});
|
|
format DspIntOp {
|
|
0x4: preceu_ph_qbl({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, SIMD_FMT_PH,
|
|
UNSIGNED, MODE_L);
|
|
}});
|
|
0x5: preceu_ph_qbr({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, SIMD_FMT_PH,
|
|
UNSIGNED, MODE_R );
|
|
}});
|
|
0x6: preceu_ph_qbla({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, SIMD_FMT_PH,
|
|
UNSIGNED, MODE_LA );
|
|
}});
|
|
0x7: preceu_ph_qbra({{
|
|
Rd.uw = dspPrece(Rt.uw, SIMD_FMT_QB,
|
|
UNSIGNED, SIMD_FMT_PH,
|
|
UNSIGNED, MODE_RA);
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table 5-8 MIPS32 SHLL.QB Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x3: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: shll_qb({{
|
|
Rd.sw = dspShll(Rt.sw, RS, SIMD_FMT_QB,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x1: shrl_qb({{
|
|
Rd.sw = dspShrl(Rt.sw, RS, SIMD_FMT_QB,
|
|
UNSIGNED);
|
|
}});
|
|
0x2: shllv_qb({{
|
|
Rd.sw = dspShll(Rt.sw, Rs.sw, SIMD_FMT_QB,
|
|
NOSATURATE, UNSIGNED, &dspctl);
|
|
}});
|
|
0x3: shrlv_qb({{
|
|
Rd.sw = dspShrl(Rt.sw, Rs.sw, SIMD_FMT_QB,
|
|
UNSIGNED);
|
|
}});
|
|
0x4: shra_qb({{
|
|
Rd.sw = dspShra(Rt.sw, RS, SIMD_FMT_QB,
|
|
NOROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x5: shra_r_qb({{
|
|
Rd.sw = dspShra(Rt.sw, RS, SIMD_FMT_QB,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x6: shrav_qb({{
|
|
Rd.sw = dspShra(Rt.sw, Rs.sw, SIMD_FMT_QB,
|
|
NOROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x7: shrav_r_qb({{
|
|
Rd.sw = dspShra(Rt.sw, Rs.sw, SIMD_FMT_QB,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: shll_ph({{
|
|
Rd.uw = dspShll(Rt.uw, RS, SIMD_FMT_PH,
|
|
NOSATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x1: shra_ph({{
|
|
Rd.sw = dspShra(Rt.sw, RS, SIMD_FMT_PH,
|
|
NOROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x2: shllv_ph({{
|
|
Rd.sw = dspShll(Rt.sw, Rs.sw, SIMD_FMT_PH,
|
|
NOSATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x3: shrav_ph({{
|
|
Rd.sw = dspShra(Rt.sw, Rs.sw, SIMD_FMT_PH,
|
|
NOROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x4: shll_s_ph({{
|
|
Rd.sw = dspShll(Rt.sw, RS, SIMD_FMT_PH,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x5: shra_r_ph({{
|
|
Rd.sw = dspShra(Rt.sw, RS, SIMD_FMT_PH,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x6: shllv_s_ph({{
|
|
Rd.sw = dspShll(Rt.sw, Rs.sw, SIMD_FMT_PH,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x7: shrav_r_ph({{
|
|
Rd.sw = dspShra(Rt.sw, Rs.sw, SIMD_FMT_PH,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x4: shll_s_w({{
|
|
Rd.sw = dspShll(Rt.sw, RS, SIMD_FMT_W,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x5: shra_r_w({{
|
|
Rd.sw = dspShra(Rt.sw, RS, SIMD_FMT_W,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
0x6: shllv_s_w({{
|
|
Rd.sw = dspShll(Rt.sw, Rs.sw, SIMD_FMT_W,
|
|
SATURATE, SIGNED, &dspctl);
|
|
}});
|
|
0x7: shrav_r_w({{
|
|
Rd.sw = dspShra(Rt.sw, Rs.sw, SIMD_FMT_W,
|
|
ROUND, SIGNED, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
format DspIntOp {
|
|
0x1: shrl_ph({{
|
|
Rd.sw = dspShrl(Rt.sw, RS, SIMD_FMT_PH,
|
|
UNSIGNED);
|
|
}});
|
|
0x3: shrlv_ph({{
|
|
Rd.sw = dspShrl(Rt.sw, Rs.sw, SIMD_FMT_PH,
|
|
UNSIGNED);
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
0x3: decode FUNCTION_LO {
|
|
|
|
//Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field
|
|
//(DSP ASE Rev2 Manual)
|
|
0x0: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: adduh_qb({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_QB,
|
|
NOROUND, UNSIGNED);
|
|
}});
|
|
0x1: subuh_qb({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_QB,
|
|
NOROUND, UNSIGNED);
|
|
}});
|
|
0x2: adduh_r_qb({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_QB,
|
|
ROUND, UNSIGNED);
|
|
}});
|
|
0x3: subuh_r_qb({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_QB,
|
|
ROUND, UNSIGNED);
|
|
}});
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: addqh_ph({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
NOROUND, SIGNED);
|
|
}});
|
|
0x1: subqh_ph({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
NOROUND, SIGNED);
|
|
}});
|
|
0x2: addqh_r_ph({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
ROUND, SIGNED);
|
|
}});
|
|
0x3: subqh_r_ph({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
ROUND, SIGNED);
|
|
}});
|
|
0x4: mul_ph({{
|
|
Rd.sw = dspMul(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
NOSATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
0x6: mul_s_ph({{
|
|
Rd.sw = dspMul(Rs.sw, Rt.sw, SIMD_FMT_PH,
|
|
SATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x0: addqh_w({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
NOROUND, SIGNED);
|
|
}});
|
|
0x1: subqh_w({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
NOROUND, SIGNED);
|
|
}});
|
|
0x2: addqh_r_w({{
|
|
Rd.uw = dspAddh(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
ROUND, SIGNED);
|
|
}});
|
|
0x3: subqh_r_w({{
|
|
Rd.uw = dspSubh(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
ROUND, SIGNED);
|
|
}});
|
|
0x6: mulq_s_w({{
|
|
Rd.sw = dspMulq(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
SATURATE, NOROUND, &dspctl);
|
|
}}, IntMultOp);
|
|
0x7: mulq_rs_w({{
|
|
Rd.sw = dspMulq(Rs.sw, Rt.sw, SIMD_FMT_W,
|
|
SATURATE, ROUND, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table A-10 MIPS32 BSHFL Encoding of sa Field
|
|
0x4: decode SA {
|
|
format BasicOp {
|
|
0x02: wsbh({{
|
|
Rd.uw = Rt.uw<23:16> << 24 |
|
|
Rt.uw<31:24> << 16 |
|
|
Rt.uw<7:0> << 8 |
|
|
Rt.uw<15:8>;
|
|
}});
|
|
0x10: seb({{ Rd.sw = Rt.sb; }});
|
|
0x18: seh({{ Rd.sw = Rt.sh; }});
|
|
}
|
|
}
|
|
|
|
0x6: decode FUNCTION_LO {
|
|
|
|
//Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x0: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x0: dpa_w_ph({{
|
|
dspac = dspDpa(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_PH, SIGNED, MODE_L);
|
|
}}, IntMultOp);
|
|
0x1: dps_w_ph({{
|
|
dspac = dspDps(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_PH, SIGNED, MODE_L);
|
|
}}, IntMultOp);
|
|
0x2: mulsa_w_ph({{
|
|
dspac = dspMulsa(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH );
|
|
}}, IntMultOp);
|
|
0x3: dpau_h_qbl({{
|
|
dspac = dspDpa(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_QB, UNSIGNED, MODE_L);
|
|
}}, IntMultOp);
|
|
0x4: dpaq_s_w_ph({{
|
|
dspac = dspDpaq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, NOSATURATE,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x5: dpsq_s_w_ph({{
|
|
dspac = dspDpsq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, NOSATURATE,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x6: mulsaq_s_w_ph({{
|
|
dspac = dspMulsaq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
&dspctl);
|
|
}}, IntMultOp);
|
|
0x7: dpau_h_qbr({{
|
|
dspac = dspDpa(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_QB, UNSIGNED, MODE_R);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x0: dpax_w_ph({{
|
|
dspac = dspDpa(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_PH, SIGNED, MODE_X);
|
|
}}, IntMultOp);
|
|
0x1: dpsx_w_ph({{
|
|
dspac = dspDps(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_PH, SIGNED, MODE_X);
|
|
}}, IntMultOp);
|
|
0x3: dpsu_h_qbl({{
|
|
dspac = dspDps(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_QB, UNSIGNED, MODE_L);
|
|
}}, IntMultOp);
|
|
0x4: dpaq_sa_l_w({{
|
|
dspac = dspDpaq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_W,
|
|
SIMD_FMT_L, SATURATE,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x5: dpsq_sa_l_w({{
|
|
dspac = dspDpsq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_W,
|
|
SIMD_FMT_L, SATURATE,
|
|
MODE_L, &dspctl);
|
|
}}, IntMultOp);
|
|
0x7: dpsu_h_qbr({{
|
|
dspac = dspDps(dspac, Rs.sw, Rt.sw, ACDST,
|
|
SIMD_FMT_QB, UNSIGNED, MODE_R);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x0: maq_sa_w_phl({{
|
|
dspac = dspMaq(dspac, Rs.uw, Rt.uw,
|
|
ACDST, SIMD_FMT_PH,
|
|
MODE_L, SATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
0x2: maq_sa_w_phr({{
|
|
dspac = dspMaq(dspac, Rs.uw, Rt.uw,
|
|
ACDST, SIMD_FMT_PH,
|
|
MODE_R, SATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
0x4: maq_s_w_phl({{
|
|
dspac = dspMaq(dspac, Rs.uw, Rt.uw,
|
|
ACDST, SIMD_FMT_PH,
|
|
MODE_L, NOSATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
0x6: maq_s_w_phr({{
|
|
dspac = dspMaq(dspac, Rs.uw, Rt.uw,
|
|
ACDST, SIMD_FMT_PH,
|
|
MODE_R, NOSATURATE, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x0: dpaqx_s_w_ph({{
|
|
dspac = dspDpaq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, NOSATURATE,
|
|
MODE_X, &dspctl);
|
|
}}, IntMultOp);
|
|
0x1: dpsqx_s_w_ph({{
|
|
dspac = dspDpsq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, NOSATURATE,
|
|
MODE_X, &dspctl);
|
|
}}, IntMultOp);
|
|
0x2: dpaqx_sa_w_ph({{
|
|
dspac = dspDpaq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, SATURATE,
|
|
MODE_X, &dspctl);
|
|
}}, IntMultOp);
|
|
0x3: dpsqx_sa_w_ph({{
|
|
dspac = dspDpsq(dspac, Rs.sw, Rt.sw,
|
|
ACDST, SIMD_FMT_PH,
|
|
SIMD_FMT_W, SATURATE,
|
|
MODE_X, &dspctl);
|
|
}}, IntMultOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Table 3.3 MIPS32 APPEND Encoding of the op Field
|
|
0x1: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format IntOp {
|
|
0x0: append({{
|
|
Rt.uw = (Rt.uw << RD) | bits(Rs.uw, RD - 1, 0);
|
|
}});
|
|
0x1: prepend({{
|
|
Rt.uw = (Rt.uw >> RD) |
|
|
(bits(Rs.uw, RD - 1, 0) << (32 - RD));
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format IntOp {
|
|
0x0: balign({{
|
|
Rt.uw = (Rt.uw << (8 * BP)) |
|
|
(Rs.uw >> (8 * (4 - BP)));
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
0x7: decode FUNCTION_LO {
|
|
|
|
//Table 5-11 MIPS32 EXTR.W Encoding of the op Field
|
|
//(DSP ASE MANUAL)
|
|
0x0: decode OP_HI {
|
|
0x0: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x0: extr_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, RS,
|
|
NOROUND, NOSATURATE, &dspctl);
|
|
}});
|
|
0x1: extrv_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, Rs.uw,
|
|
NOROUND, NOSATURATE, &dspctl);
|
|
}});
|
|
0x2: extp({{
|
|
Rt.uw = dspExtp(dspac, RS, &dspctl);
|
|
}});
|
|
0x3: extpv({{
|
|
Rt.uw = dspExtp(dspac, Rs.uw, &dspctl);
|
|
}});
|
|
0x4: extr_r_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, RS,
|
|
ROUND, NOSATURATE, &dspctl);
|
|
}});
|
|
0x5: extrv_r_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, Rs.uw,
|
|
ROUND, NOSATURATE, &dspctl);
|
|
}});
|
|
0x6: extr_rs_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, RS,
|
|
ROUND, SATURATE, &dspctl);
|
|
}});
|
|
0x7: extrv_rs_w({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_W, Rs.uw,
|
|
ROUND, SATURATE, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x1: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x2: extpdp({{
|
|
Rt.uw = dspExtpd(dspac, RS, &dspctl);
|
|
}});
|
|
0x3: extpdpv({{
|
|
Rt.uw = dspExtpd(dspac, Rs.uw, &dspctl);
|
|
}});
|
|
0x6: extr_s_h({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_PH, RS,
|
|
NOROUND, SATURATE, &dspctl);
|
|
}});
|
|
0x7: extrv_s_h({{
|
|
Rt.uw = dspExtr(dspac, SIMD_FMT_PH, Rs.uw,
|
|
NOROUND, SATURATE, &dspctl);
|
|
}});
|
|
}
|
|
}
|
|
0x2: decode OP_LO {
|
|
format DspIntOp {
|
|
0x2: rddsp({{
|
|
Rd.uw = readDSPControl(&dspctl, RDDSPMASK);
|
|
}});
|
|
0x3: wrdsp({{
|
|
writeDSPControl(&dspctl, Rs.uw, WRDSPMASK);
|
|
}});
|
|
}
|
|
}
|
|
0x3: decode OP_LO {
|
|
format DspHiLoOp {
|
|
0x2: shilo({{
|
|
if (sext<6>(HILOSA) < 0) {
|
|
dspac = (uint64_t)dspac <<
|
|
-sext<6>(HILOSA);
|
|
} else {
|
|
dspac = (uint64_t)dspac >>
|
|
sext<6>(HILOSA);
|
|
}
|
|
}});
|
|
0x3: shilov({{
|
|
if (sext<6>(Rs.sw<5:0>) < 0) {
|
|
dspac = (uint64_t)dspac <<
|
|
-sext<6>(Rs.sw<5:0>);
|
|
} else {
|
|
dspac = (uint64_t)dspac >>
|
|
sext<6>(Rs.sw<5:0>);
|
|
}
|
|
}});
|
|
0x7: mthlip({{
|
|
dspac = dspac << 32;
|
|
dspac |= Rs.uw;
|
|
dspctl = insertBits(dspctl, 5, 0,
|
|
dspctl<5:0> + 32);
|
|
}});
|
|
}
|
|
}
|
|
}
|
|
0x3: decode OP {
|
|
#if FULL_SYSTEM
|
|
0x0: FailUnimpl::rdhwr();
|
|
#else
|
|
0x0: decode RD {
|
|
29: BasicOp::rdhwr({{ Rt = TpValue; }});
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
0x4: decode OPCODE_LO {
|
|
format LoadMemory {
|
|
0x0: lb({{ Rt.sw = Mem.sb; }});
|
|
0x1: lh({{ Rt.sw = Mem.sh; }});
|
|
0x3: lw({{ Rt.sw = Mem.sw; }});
|
|
0x4: lbu({{ Rt.uw = Mem.ub;}});
|
|
0x5: lhu({{ Rt.uw = Mem.uh; }});
|
|
}
|
|
|
|
format LoadUnalignedMemory {
|
|
0x2: lwl({{
|
|
uint32_t mem_shift = 24 - (8 * byte_offset);
|
|
Rt.uw = mem_word << mem_shift | (Rt.uw & mask(mem_shift));
|
|
}});
|
|
0x6: lwr({{
|
|
uint32_t mem_shift = 8 * byte_offset;
|
|
Rt.uw = (Rt.uw & (mask(mem_shift) << (32 - mem_shift))) |
|
|
(mem_word >> mem_shift);
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x5: decode OPCODE_LO {
|
|
format StoreMemory {
|
|
0x0: sb({{ Mem.ub = Rt<7:0>; }});
|
|
0x1: sh({{ Mem.uh = Rt<15:0>; }});
|
|
0x3: sw({{ Mem.uw = Rt<31:0>; }});
|
|
}
|
|
|
|
format StoreUnalignedMemory {
|
|
0x2: swl({{
|
|
uint32_t reg_shift = 24 - (8 * byte_offset);
|
|
uint32_t mem_shift = 32 - reg_shift;
|
|
mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
|
|
(Rt.uw >> reg_shift);
|
|
}});
|
|
0x6: swr({{
|
|
uint32_t reg_shift = 8 * byte_offset;
|
|
mem_word = Rt.uw << reg_shift |
|
|
(mem_word & (mask(reg_shift)));
|
|
}});
|
|
}
|
|
format CP0Control {
|
|
0x7: cache({{
|
|
//Addr CacheEA = Rs.uw + OFFSET;
|
|
//fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
|
|
}});
|
|
}
|
|
}
|
|
|
|
0x6: decode OPCODE_LO {
|
|
format LoadMemory {
|
|
0x0: ll({{ Rt.uw = Mem.uw; }}, mem_flags=LLSC);
|
|
0x1: lwc1({{ Ft.uw = Mem.uw; }});
|
|
0x5: ldc1({{ Ft.ud = Mem.ud; }});
|
|
}
|
|
0x2: CP2Unimpl::lwc2();
|
|
0x6: CP2Unimpl::ldc2();
|
|
0x3: Prefetch::pref();
|
|
}
|
|
|
|
|
|
0x7: decode OPCODE_LO {
|
|
0x0: StoreCond::sc({{ Mem.uw = Rt.uw; }},
|
|
{{ uint64_t tmp = write_result;
|
|
Rt.uw = (tmp == 0 || tmp == 1) ? tmp : Rt.uw;
|
|
}}, mem_flags=LLSC,
|
|
inst_flags = IsStoreConditional);
|
|
format StoreMemory {
|
|
0x1: swc1({{ Mem.uw = Ft.uw; }});
|
|
0x5: sdc1({{ Mem.ud = Ft.ud; }});
|
|
}
|
|
0x2: CP2Unimpl::swc2();
|
|
0x6: CP2Unimpl::sdc2();
|
|
}
|
|
}
|
|
|
|
|