e553a7bfa7
this patch adds the source for mcpat, a power, area, and timing modeling framework.
222 lines
7.4 KiB
C++
222 lines
7.4 KiB
C++
/*****************************************************************************
|
|
* McPAT
|
|
* SOFTWARE LICENSE AGREEMENT
|
|
* Copyright 2012 Hewlett-Packard Development Company, L.P.
|
|
* All Rights Reserved
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
|
|
*
|
|
***************************************************************************/
|
|
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
#include "globalvar.h"
|
|
#include "interconnect.h"
|
|
#include "wire.h"
|
|
|
|
interconnect::interconnect(
|
|
string name_,
|
|
enum Device_ty device_ty_,
|
|
double base_w, double base_h,
|
|
int data_w, double len,const InputParameter *configure_interface,
|
|
int start_wiring_level_,
|
|
bool pipelinable_ ,
|
|
double route_over_perc_ ,
|
|
bool opt_local_,
|
|
enum Core_type core_ty_,
|
|
enum Wire_type wire_model,
|
|
double width_s, double space_s,
|
|
TechnologyParameter::DeviceType *dt
|
|
)
|
|
:name(name_),
|
|
device_ty(device_ty_),
|
|
in_rise_time(0),
|
|
out_rise_time(0),
|
|
base_width(base_w),
|
|
base_height(base_h),
|
|
data_width(data_w),
|
|
wt(wire_model),
|
|
width_scaling(width_s),
|
|
space_scaling(space_s),
|
|
start_wiring_level(start_wiring_level_),
|
|
length(len),
|
|
//interconnect_latency(1e-12),
|
|
//interconnect_throughput(1e-12),
|
|
opt_local(opt_local_),
|
|
core_ty(core_ty_),
|
|
pipelinable(pipelinable_),
|
|
route_over_perc(route_over_perc_),
|
|
deviceType(dt)
|
|
{
|
|
|
|
wt = Global;
|
|
l_ip=*configure_interface;
|
|
local_result = init_interface(&l_ip);
|
|
|
|
|
|
max_unpipelined_link_delay = 0; //TODO
|
|
min_w_nmos = g_tp.min_w_nmos_;
|
|
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
|
|
|
|
|
|
|
|
latency = l_ip.latency;
|
|
throughput = l_ip.throughput;
|
|
latency_overflow=false;
|
|
throughput_overflow=false;
|
|
|
|
/*
|
|
* TODO: Add wiring option from semi-global to global automatically
|
|
* And directly jump to global if semi-global cannot satisfy timing
|
|
* Fat wires only available for global wires, thus
|
|
* if signal wiring layer starts from semi-global,
|
|
* the next layer up will be global, i.e., semi-global does
|
|
* not have fat wires.
|
|
*/
|
|
if (pipelinable == false)
|
|
//Non-pipelinable wires, such as bypass logic, care latency
|
|
{
|
|
compute();
|
|
if (opt_for_clk && opt_local)
|
|
{
|
|
while (delay > latency && width_scaling<3.0)
|
|
{
|
|
width_scaling *= 2;
|
|
space_scaling *= 2;
|
|
Wire winit(width_scaling, space_scaling);
|
|
compute();
|
|
}
|
|
if (delay > latency)
|
|
{
|
|
latency_overflow=true;
|
|
}
|
|
}
|
|
}
|
|
else //Pipelinable wires, such as bus, does not care latency but throughput
|
|
{
|
|
/*
|
|
* TODO: Add pipe regs power, area, and timing;
|
|
* Pipelinable wires optimize latency first.
|
|
*/
|
|
compute();
|
|
if (opt_for_clk && opt_local)
|
|
{
|
|
while (delay > throughput && width_scaling<3.0)
|
|
{
|
|
width_scaling *= 2;
|
|
space_scaling *= 2;
|
|
Wire winit(width_scaling, space_scaling);
|
|
compute();
|
|
}
|
|
if (delay > throughput)
|
|
// insert pipeline stages
|
|
{
|
|
num_pipe_stages = (int)ceil(delay/throughput);
|
|
assert(num_pipe_stages>0);
|
|
delay = delay/num_pipe_stages + num_pipe_stages*0.05*delay;
|
|
}
|
|
}
|
|
}
|
|
|
|
power_bit = power;
|
|
power.readOp.dynamic *= data_width;
|
|
power.readOp.leakage *= data_width;
|
|
power.readOp.gate_leakage *= data_width;
|
|
area.set_area(area.get_area()*data_width);
|
|
no_device_under_wire_area.h *= data_width;
|
|
|
|
if (latency_overflow==true)
|
|
cout<< "Warning: "<< name <<" wire structure cannot satisfy latency constraint." << endl;
|
|
|
|
|
|
assert(power.readOp.dynamic > 0);
|
|
assert(power.readOp.leakage > 0);
|
|
assert(power.readOp.gate_leakage > 0);
|
|
|
|
double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
|
|
|
|
double sckRation = g_tp.sckt_co_eff;
|
|
power.readOp.dynamic *= sckRation;
|
|
power.writeOp.dynamic *= sckRation;
|
|
power.searchOp.dynamic *= sckRation;
|
|
|
|
power.readOp.longer_channel_leakage =
|
|
power.readOp.leakage*long_channel_device_reduction;
|
|
|
|
if (pipelinable)//Only global wires has the option to choose whether routing over or not
|
|
area.set_area(area.get_area()*route_over_perc + no_device_under_wire_area.get_area()*(1-route_over_perc));
|
|
|
|
Wire wreset();
|
|
}
|
|
|
|
|
|
|
|
void
|
|
interconnect::compute()
|
|
{
|
|
|
|
Wire *wtemp1 = 0;
|
|
wtemp1 = new Wire(wt, length, 1, width_scaling, space_scaling);
|
|
delay = wtemp1->delay;
|
|
power.readOp.dynamic = wtemp1->power.readOp.dynamic;
|
|
power.readOp.leakage = wtemp1->power.readOp.leakage;
|
|
power.readOp.gate_leakage = wtemp1->power.readOp.gate_leakage;
|
|
|
|
area.set_area(wtemp1->area.get_area());
|
|
no_device_under_wire_area.h = (wtemp1->wire_width + wtemp1->wire_spacing);
|
|
no_device_under_wire_area.w = length;
|
|
|
|
if (wtemp1)
|
|
delete wtemp1;
|
|
|
|
}
|
|
|
|
void interconnect::leakage_feedback(double temperature)
|
|
{
|
|
l_ip.temp = (unsigned int)round(temperature/10.0)*10;
|
|
uca_org_t init_result = init_interface(&l_ip); // init_result is dummy
|
|
|
|
compute();
|
|
|
|
power_bit = power;
|
|
power.readOp.dynamic *= data_width;
|
|
power.readOp.leakage *= data_width;
|
|
power.readOp.gate_leakage *= data_width;
|
|
|
|
assert(power.readOp.dynamic > 0);
|
|
assert(power.readOp.leakage > 0);
|
|
assert(power.readOp.gate_leakage > 0);
|
|
|
|
double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
|
|
|
|
double sckRation = g_tp.sckt_co_eff;
|
|
power.readOp.dynamic *= sckRation;
|
|
power.writeOp.dynamic *= sckRation;
|
|
power.searchOp.dynamic *= sckRation;
|
|
|
|
power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction;
|
|
}
|
|
|