gem5/cpu/beta_cpu/rename_map.hh
Kevin Lim e3fb9afa79 Update to make multiple instruction issue and different latencies work.
Also change to ref counted DynInst.

SConscript:
    Add branch predictor, BTB, load store queue, and storesets.
arch/isa_parser.py:
    Specify the template parameter for AlphaDynInst
base/traceflags.py:
    Add load store queue, store set, and mem dependence unit to the
    list of trace flags.
cpu/base_dyn_inst.cc:
    Change formating, add in debug statement.
cpu/base_dyn_inst.hh:
    Change DynInst to be RefCounted, add flag to clear whether or not this
    instruction can commit.  This is likely to be removed in the future.
cpu/beta_cpu/alpha_dyn_inst.cc:
    AlphaDynInst has been changed to be templated, so now this CC file
    is just used to force instantiations of AlphaDynInst.
cpu/beta_cpu/alpha_dyn_inst.hh:
    Changed AlphaDynInst to be templated on Impl.  Removed some unnecessary
    functions.
cpu/beta_cpu/alpha_full_cpu.cc:
    AlphaFullCPU has been changed to be templated, so this CC file is now
    just used to force instantation of AlphaFullCPU.
cpu/beta_cpu/alpha_full_cpu.hh:
    Change AlphaFullCPU to be templated on Impl.
cpu/beta_cpu/alpha_impl.hh:
    Update it to reflect AlphaDynInst and AlphaFullCPU being templated
    on Impl.  Also removed time buffers from here, as they are really
    a part of the CPU and are thus in the CPU policy now.
cpu/beta_cpu/alpha_params.hh:
    Make AlphaSimpleParams inherit from the BaseFullCPU so that it doesn't
    need to specifically declare any parameters that are already in the
    BaseFullCPU.
cpu/beta_cpu/comm.hh:
    Changed the structure of the time buffer communication structs.  Now
    they include the size of the packet of instructions it is sending.
    Added some parameters to the backwards communication struct, mainly
    for squashing.
cpu/beta_cpu/commit.hh:
    Update typenames to reflect change in location of time buffer structs.
    Update DynInst to DynInstPtr (it is refcounted now).
cpu/beta_cpu/commit_impl.hh:
    Formatting changes mainly.  Also sends back proper information
    on branch mispredicts so that the bpred unit can update itself.
    Updated behavior for non-speculative instructions (stores, any
    other non-spec instructions): once they reach the head of the ROB,
    the ROB signals back to the IQ that it can go ahead and issue the
    non-speculative instruction.  The instruction itself is updated so that
    commit won't try to commit it again until it is done executing.
cpu/beta_cpu/cpu_policy.hh:
    Added branch prediction unit, mem dependence prediction unit, load
    store queue.  Moved time buffer structs from AlphaSimpleImpl to here.
cpu/beta_cpu/decode.hh:
    Changed typedefs to reflect change in location of time buffer structs
    and also the change from DynInst to ref counted DynInstPtr.
cpu/beta_cpu/decode_impl.hh:
    Continues to buffer instructions even while unblocking now.  Changed
    how it loops through groups of instructions so it can properly block
    during the middle of a group of instructions.
cpu/beta_cpu/fetch.hh:
    Changed typedefs to reflect change in location of time buffer structs
    and the change to ref counted DynInsts.  Also added in branch
    brediction unit.
cpu/beta_cpu/fetch_impl.hh:
    Add in branch prediction.  Changed how fetch checks inputs and its
    current state to make for easier logic.
cpu/beta_cpu/free_list.cc:
    Changed int regs and float regs to logically use one flat namespace.
    Future change will be moving them to a single scoreboard to conserve
    space.
cpu/beta_cpu/free_list.hh:
    Mostly debugging statements.  Might be removed for performance in future.
cpu/beta_cpu/full_cpu.cc:
    Added in some debugging statements.  Updated BaseFullCPU to take
    a params object.
cpu/beta_cpu/full_cpu.hh:
    Added params class within BaseCPU that other param classes will be
    able to inherit from.  Updated typedefs to reflect change in location
    of time buffer structs and ref counted DynInst.
cpu/beta_cpu/iew.hh:
    Updated typedefs to reflect change in location of time buffer structs
    and use of ref counted DynInsts.
cpu/beta_cpu/iew_impl.hh:
    Added in load store queue, updated iew to be able to execute non-
    speculative instructions, instead of having them execute in commit.
cpu/beta_cpu/inst_queue.hh:
    Updated change to ref counted DynInsts.  Changed inst queue to hold
    non-speculative instructions as well, which are issued only when
    commit signals backwards that a nonspeculative instruction is at
    the head of the ROB.
cpu/beta_cpu/inst_queue_impl.hh:
    Updated to allow for non-speculative instructions to be in the inst
    queue.  Also added some debug functions.
cpu/beta_cpu/regfile.hh:
    Added debugging statements, changed formatting.
cpu/beta_cpu/rename.hh:
    Updated typedefs, added some functions to clean up code.
cpu/beta_cpu/rename_impl.hh:
    Moved some code into functions to make it easier to read.
cpu/beta_cpu/rename_map.cc:
    Changed int and float reg behavior to use a single flat namespace.  In
    the future, the rename maps can be combined to a single rename map to
    save space.
cpu/beta_cpu/rename_map.hh:
    Added destructor.
cpu/beta_cpu/rob.hh:
    Updated it with change from DynInst to ref counted DynInst.
cpu/beta_cpu/rob_impl.hh:
    Formatting, updated to use ref counted DynInst.
cpu/static_inst.hh:
    Updated forward declaration for AlphaDynInst now that it is templated.

--HG--
extra : convert_revision : 1045f240ee9b6a4bd368e1806aca029ebbdc6dd3
2004-09-23 14:06:03 -04:00

145 lines
3.9 KiB
C++

// Todo: Create destructor.
// Have it so that there's a more meaningful name given to the variable
// that marks the beginning of the FP registers.
#ifndef __RENAME_MAP_HH__
#define __RENAME_MAP_HH__
#include <iostream>
#include <vector>
#include <utility>
#include "cpu/beta_cpu/free_list.hh"
using namespace std;
class SimpleRenameMap
{
public:
/**
* Pair of a logical register and a physical register. Tells the
* previous mapping of a logical register to a physical register.
* Used to roll back the rename map to a previous state.
*/
typedef pair<RegIndex, PhysRegIndex> UnmapInfo;
/**
* Pair of a physical register and a physical register. Used to
* return the physical register that a logical register has been
* renamed to, and the previous physical register that the same
* logical register was previously mapped to.
*/
typedef pair<PhysRegIndex, PhysRegIndex> RenameInfo;
public:
//Constructor
SimpleRenameMap(unsigned _numLogicalIntRegs,
unsigned _numPhysicalIntRegs,
unsigned _numLogicalFloatRegs,
unsigned _numPhysicalFloatRegs,
unsigned _numMiscRegs,
RegIndex _intZeroReg,
RegIndex _floatZeroReg);
/** Destructor. */
~SimpleRenameMap();
void setFreeList(SimpleFreeList *fl_ptr);
//Tell rename map to get a free physical register for a given
//architected register. Not sure it should have a return value,
//but perhaps it should have some sort of fault in case there are
//no free registers.
RenameInfo rename(RegIndex arch_reg);
PhysRegIndex lookup(RegIndex phys_reg);
bool isReady(PhysRegIndex arch_reg);
/**
* Marks the given register as ready, meaning that its value has been
* calculated and written to the register file.
* @params ready_reg The index of the physical register that is now
* ready.
*/
void markAsReady(PhysRegIndex ready_reg);
void setEntry(RegIndex arch_reg, PhysRegIndex renamed_reg);
void squash(vector<RegIndex> freed_regs,
vector<UnmapInfo> unmaps);
int numFreeEntries();
private:
/** Number of logical integer registers. */
int numLogicalIntRegs;
/** Number of physical integer registers. */
int numPhysicalIntRegs;
/** Number of logical floating point registers. */
int numLogicalFloatRegs;
/** Number of physical floating point registers. */
int numPhysicalFloatRegs;
/** Number of miscellaneous registers. */
int numMiscRegs;
/** Number of logical integer + float registers. */
int numLogicalRegs;
/** Number of physical integer + float registers. */
int numPhysicalRegs;
/** The integer zero register. This implementation assumes it is always
* zero and never can be anything else.
*/
RegIndex intZeroReg;
/** The floating point zero register. This implementation assumes it is
* always zero and never can be anything else.
*/
RegIndex floatZeroReg;
class RenameEntry
{
public:
PhysRegIndex physical_reg;
bool valid;
RenameEntry()
: physical_reg(0), valid(false)
{ }
};
/** Integer rename map. */
RenameEntry *intRenameMap;
/** Floating point rename map. */
RenameEntry *floatRenameMap;
/** Free list interface. */
SimpleFreeList *freeList;
// Might want to make all these scoreboards into one large scoreboard.
/** Scoreboard of physical integer registers, saying whether or not they
* are ready.
*/
vector<bool> intScoreboard;
/** Scoreboard of physical floating registers, saying whether or not they
* are ready.
*/
vector<bool> floatScoreboard;
/** Scoreboard of miscellaneous registers, saying whether or not they
* are ready.
*/
vector<bool> miscScoreboard;
};
#endif //__RENAME_MAP_HH__