34da58a698
into zamp.eecs.umich.edu:/z/ktlim2/clean/m5-clean arch/alpha/ev5.cc: cpu/o3/regfile.hh: Hand merge. --HG-- rename : arch/alpha/alpha_memory.cc => arch/alpha/tlb.cc extra : convert_revision : c941dd2198851398820b38a66471372ed8454891
1209 lines
31 KiB
C++
1209 lines
31 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratories.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kgdb_stub.c 8.4 (Berkeley) 1/12/94
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $
|
|
*
|
|
* Taken from NetBSD
|
|
*
|
|
* "Stub" to allow remote cpu to debug over a serial line using gdb.
|
|
*/
|
|
|
|
#include <sys/signal.h>
|
|
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <unistd.h>
|
|
|
|
#include "base/intmath.hh"
|
|
#include "base/kgdb.h"
|
|
#include "base/remote_gdb.hh"
|
|
#include "base/socket.hh"
|
|
#include "base/trace.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "mem/functional/physical.hh"
|
|
#include "sim/system.hh"
|
|
#include "arch/vtophys.hh"
|
|
|
|
using namespace std;
|
|
using namespace TheISA;
|
|
|
|
#ifndef NDEBUG
|
|
vector<RemoteGDB *> debuggers;
|
|
int current_debugger = -1;
|
|
|
|
void
|
|
debugger()
|
|
{
|
|
if (current_debugger >= 0 && current_debugger < debuggers.size()) {
|
|
RemoteGDB *gdb = debuggers[current_debugger];
|
|
if (!gdb->isattached())
|
|
gdb->listener->accept();
|
|
if (gdb->isattached())
|
|
gdb->trap(ALPHA_KENTRY_IF);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
///////////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
//
|
|
|
|
GDBListener::Event::Event(GDBListener *l, int fd, int e)
|
|
: PollEvent(fd, e), listener(l)
|
|
{}
|
|
|
|
void
|
|
GDBListener::Event::process(int revent)
|
|
{
|
|
listener->accept();
|
|
}
|
|
|
|
GDBListener::GDBListener(RemoteGDB *g, int p)
|
|
: event(NULL), gdb(g), port(p)
|
|
{
|
|
assert(!gdb->listener);
|
|
gdb->listener = this;
|
|
}
|
|
|
|
GDBListener::~GDBListener()
|
|
{
|
|
if (event)
|
|
delete event;
|
|
}
|
|
|
|
string
|
|
GDBListener::name()
|
|
{
|
|
return gdb->name() + ".listener";
|
|
}
|
|
|
|
void
|
|
GDBListener::listen()
|
|
{
|
|
while (!listener.listen(port, true)) {
|
|
DPRINTF(GDBMisc, "Can't bind port %d\n", port);
|
|
port++;
|
|
}
|
|
|
|
event = new Event(this, listener.getfd(), POLLIN);
|
|
pollQueue.schedule(event);
|
|
|
|
#ifndef NDEBUG
|
|
gdb->number = debuggers.size();
|
|
debuggers.push_back(gdb);
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
ccprintf(cerr, "%d: %s: listening for remote gdb #%d on port %d\n",
|
|
curTick, name(), gdb->number, port);
|
|
#else
|
|
ccprintf(cerr, "%d: %s: listening for remote gdb on port %d\n",
|
|
curTick, name(), port);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
GDBListener::accept()
|
|
{
|
|
if (!listener.islistening())
|
|
panic("GDBListener::accept(): cannot accept if we're not listening!");
|
|
|
|
int sfd = listener.accept(true);
|
|
|
|
if (sfd != -1) {
|
|
if (gdb->isattached())
|
|
close(sfd);
|
|
else
|
|
gdb->attach(sfd);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
//
|
|
int digit2i(char);
|
|
char i2digit(int);
|
|
void mem2hex(void *, const void *, int);
|
|
const char *hex2mem(void *, const char *, int);
|
|
Addr hex2i(const char **);
|
|
|
|
RemoteGDB::Event::Event(RemoteGDB *g, int fd, int e)
|
|
: PollEvent(fd, e), gdb(g)
|
|
{}
|
|
|
|
void
|
|
RemoteGDB::Event::process(int revent)
|
|
{
|
|
if (revent & POLLIN)
|
|
gdb->trap(ALPHA_KENTRY_IF);
|
|
else if (revent & POLLNVAL)
|
|
gdb->detach();
|
|
}
|
|
|
|
RemoteGDB::RemoteGDB(System *_system, ExecContext *c)
|
|
: event(NULL), listener(NULL), number(-1), fd(-1),
|
|
active(false), attached(false),
|
|
system(_system), pmem(_system->physmem), context(c)
|
|
{
|
|
memset(gdbregs, 0, sizeof(gdbregs));
|
|
}
|
|
|
|
RemoteGDB::~RemoteGDB()
|
|
{
|
|
if (event)
|
|
delete event;
|
|
}
|
|
|
|
string
|
|
RemoteGDB::name()
|
|
{
|
|
return system->name() + ".remote_gdb";
|
|
}
|
|
|
|
bool
|
|
RemoteGDB::isattached()
|
|
{ return attached; }
|
|
|
|
void
|
|
RemoteGDB::attach(int f)
|
|
{
|
|
fd = f;
|
|
|
|
event = new Event(this, fd, POLLIN);
|
|
pollQueue.schedule(event);
|
|
|
|
attached = true;
|
|
DPRINTFN("remote gdb attached\n");
|
|
}
|
|
|
|
void
|
|
RemoteGDB::detach()
|
|
{
|
|
attached = false;
|
|
close(fd);
|
|
fd = -1;
|
|
|
|
pollQueue.remove(event);
|
|
DPRINTFN("remote gdb detached\n");
|
|
}
|
|
|
|
const char *
|
|
gdb_command(char cmd)
|
|
{
|
|
switch (cmd) {
|
|
case KGDB_SIGNAL: return "KGDB_SIGNAL";
|
|
case KGDB_SET_BAUD: return "KGDB_SET_BAUD";
|
|
case KGDB_SET_BREAK: return "KGDB_SET_BREAK";
|
|
case KGDB_CONT: return "KGDB_CONT";
|
|
case KGDB_ASYNC_CONT: return "KGDB_ASYNC_CONT";
|
|
case KGDB_DEBUG: return "KGDB_DEBUG";
|
|
case KGDB_DETACH: return "KGDB_DETACH";
|
|
case KGDB_REG_R: return "KGDB_REG_R";
|
|
case KGDB_REG_W: return "KGDB_REG_W";
|
|
case KGDB_SET_THREAD: return "KGDB_SET_THREAD";
|
|
case KGDB_CYCLE_STEP: return "KGDB_CYCLE_STEP";
|
|
case KGDB_SIG_CYCLE_STEP: return "KGDB_SIG_CYCLE_STEP";
|
|
case KGDB_KILL: return "KGDB_KILL";
|
|
case KGDB_MEM_W: return "KGDB_MEM_W";
|
|
case KGDB_MEM_R: return "KGDB_MEM_R";
|
|
case KGDB_SET_REG: return "KGDB_SET_REG";
|
|
case KGDB_READ_REG: return "KGDB_READ_REG";
|
|
case KGDB_QUERY_VAR: return "KGDB_QUERY_VAR";
|
|
case KGDB_SET_VAR: return "KGDB_SET_VAR";
|
|
case KGDB_RESET: return "KGDB_RESET";
|
|
case KGDB_STEP: return "KGDB_STEP";
|
|
case KGDB_ASYNC_STEP: return "KGDB_ASYNC_STEP";
|
|
case KGDB_THREAD_ALIVE: return "KGDB_THREAD_ALIVE";
|
|
case KGDB_TARGET_EXIT: return "KGDB_TARGET_EXIT";
|
|
case KGDB_BINARY_DLOAD: return "KGDB_BINARY_DLOAD";
|
|
case KGDB_CLR_HW_BKPT: return "KGDB_CLR_HW_BKPT";
|
|
case KGDB_SET_HW_BKPT: return "KGDB_SET_HW_BKPT";
|
|
case KGDB_START: return "KGDB_START";
|
|
case KGDB_END: return "KGDB_END";
|
|
case KGDB_GOODP: return "KGDB_GOODP";
|
|
case KGDB_BADP: return "KGDB_BADP";
|
|
default: return "KGDB_UNKNOWN";
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// RemoteGDB::acc
|
|
//
|
|
// Determine if the mapping at va..(va+len) is valid.
|
|
//
|
|
bool
|
|
RemoteGDB::acc(Addr va, size_t len)
|
|
{
|
|
Addr last_va;
|
|
|
|
va = TheISA::TruncPage(va);
|
|
last_va = TheISA::RoundPage(va + len);
|
|
|
|
do {
|
|
if (TheISA::IsK0Seg(va)) {
|
|
if (va < (TheISA::K0SegBase + pmem->size())) {
|
|
DPRINTF(GDBAcc, "acc: Mapping is valid K0SEG <= "
|
|
"%#x < K0SEG + size\n", va);
|
|
return true;
|
|
} else {
|
|
DPRINTF(GDBAcc, "acc: Mapping invalid %#x > K0SEG + size\n",
|
|
va);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This code says that all accesses to palcode (instruction and data)
|
|
* are valid since there isn't a va->pa mapping because palcode is
|
|
* accessed physically. At some point this should probably be cleaned up
|
|
* but there is no easy way to do it.
|
|
*/
|
|
|
|
if (AlphaISA::PcPAL(va) || va < 0x10000)
|
|
return true;
|
|
|
|
Addr ptbr = context->readMiscReg(AlphaISA::IPR_PALtemp20);
|
|
TheISA::PageTableEntry pte = kernel_pte_lookup(pmem, ptbr, va);
|
|
if (!pte.valid()) {
|
|
DPRINTF(GDBAcc, "acc: %#x pte is invalid\n", va);
|
|
return false;
|
|
}
|
|
va += TheISA::PageBytes;
|
|
} while (va < last_va);
|
|
|
|
DPRINTF(GDBAcc, "acc: %#x mapping is valid\n", va);
|
|
return true;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// RemoteGDB::signal
|
|
//
|
|
// Translate a trap number into a Unix-compatible signal number.
|
|
// (GDB only understands Unix signal numbers.)
|
|
//
|
|
int
|
|
RemoteGDB::signal(int type)
|
|
{
|
|
switch (type) {
|
|
case ALPHA_KENTRY_INT:
|
|
return (SIGTRAP);
|
|
|
|
case ALPHA_KENTRY_UNA:
|
|
return (SIGBUS);
|
|
|
|
case ALPHA_KENTRY_ARITH:
|
|
return (SIGFPE);
|
|
|
|
case ALPHA_KENTRY_IF:
|
|
return (SIGILL);
|
|
|
|
case ALPHA_KENTRY_MM:
|
|
return (SIGSEGV);
|
|
|
|
default:
|
|
panic("unknown signal type");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// RemoteGDB::getregs
|
|
//
|
|
// Translate the kernel debugger register format into
|
|
// the GDB register format.
|
|
void
|
|
RemoteGDB::getregs()
|
|
{
|
|
memset(gdbregs, 0, sizeof(gdbregs));
|
|
memcpy(&gdbregs[KGDB_REG_V0], context->regs.intRegFile, 32 * sizeof(uint64_t));
|
|
#ifdef KGDB_FP_REGS
|
|
memcpy(&gdbregs[KGDB_REG_F0], context->regs.floatRegFile.q,
|
|
32 * sizeof(uint64_t));
|
|
#endif
|
|
gdbregs[KGDB_REG_PC] = context->regs.pc;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// RemoteGDB::setregs
|
|
//
|
|
// Translate the GDB register format into the kernel
|
|
// debugger register format.
|
|
//
|
|
void
|
|
RemoteGDB::setregs()
|
|
{
|
|
memcpy(context->regs.intRegFile, &gdbregs[KGDB_REG_V0],
|
|
32 * sizeof(uint64_t));
|
|
#ifdef KGDB_FP_REGS
|
|
memcpy(context->regs.floatRegFile.q, &gdbregs[KGDB_REG_F0],
|
|
32 * sizeof(uint64_t));
|
|
#endif
|
|
context->regs.pc = gdbregs[KGDB_REG_PC];
|
|
}
|
|
|
|
void
|
|
RemoteGDB::setTempBreakpoint(TempBreakpoint &bkpt, Addr addr)
|
|
{
|
|
DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n", addr);
|
|
|
|
bkpt.address = addr;
|
|
insertHardBreak(addr, 4);
|
|
}
|
|
|
|
void
|
|
RemoteGDB::clearTempBreakpoint(TempBreakpoint &bkpt)
|
|
{
|
|
DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n",
|
|
bkpt.address);
|
|
|
|
|
|
removeHardBreak(bkpt.address, 4);
|
|
bkpt.address = 0;
|
|
}
|
|
|
|
void
|
|
RemoteGDB::clearSingleStep()
|
|
{
|
|
DPRINTF(GDBMisc, "clearSingleStep bt_addr=%#x nt_addr=%#x\n",
|
|
takenBkpt.address, notTakenBkpt.address);
|
|
|
|
if (takenBkpt.address != 0)
|
|
clearTempBreakpoint(takenBkpt);
|
|
|
|
if (notTakenBkpt.address != 0)
|
|
clearTempBreakpoint(notTakenBkpt);
|
|
}
|
|
|
|
void
|
|
RemoteGDB::setSingleStep()
|
|
{
|
|
Addr pc = context->regs.pc;
|
|
Addr npc, bpc;
|
|
bool set_bt = false;
|
|
|
|
npc = pc + sizeof(MachInst);
|
|
|
|
// User was stopped at pc, e.g. the instruction at pc was not
|
|
// executed.
|
|
MachInst inst = read<MachInst>(pc);
|
|
StaticInstPtr si(inst);
|
|
if (si->hasBranchTarget(pc, context, bpc)) {
|
|
// Don't bother setting a breakpoint on the taken branch if it
|
|
// is the same as the next pc
|
|
if (bpc != npc)
|
|
set_bt = true;
|
|
}
|
|
|
|
DPRINTF(GDBMisc, "setSingleStep bt_addr=%#x nt_addr=%#x\n",
|
|
takenBkpt.address, notTakenBkpt.address);
|
|
|
|
setTempBreakpoint(notTakenBkpt, npc);
|
|
|
|
if (set_bt)
|
|
setTempBreakpoint(takenBkpt, bpc);
|
|
}
|
|
|
|
/////////////////////////
|
|
//
|
|
//
|
|
|
|
uint8_t
|
|
RemoteGDB::getbyte()
|
|
{
|
|
uint8_t b;
|
|
::read(fd, &b, 1);
|
|
return b;
|
|
}
|
|
|
|
void
|
|
RemoteGDB::putbyte(uint8_t b)
|
|
{
|
|
::write(fd, &b, 1);
|
|
}
|
|
|
|
// Send a packet to gdb
|
|
void
|
|
RemoteGDB::send(const char *bp)
|
|
{
|
|
const char *p;
|
|
uint8_t csum, c;
|
|
|
|
DPRINTF(GDBSend, "send: %s\n", bp);
|
|
|
|
do {
|
|
p = bp;
|
|
putbyte(KGDB_START);
|
|
for (csum = 0; (c = *p); p++) {
|
|
putbyte(c);
|
|
csum += c;
|
|
}
|
|
putbyte(KGDB_END);
|
|
putbyte(i2digit(csum >> 4));
|
|
putbyte(i2digit(csum));
|
|
} while ((c = getbyte() & 0x7f) == KGDB_BADP);
|
|
}
|
|
|
|
// Receive a packet from gdb
|
|
int
|
|
RemoteGDB::recv(char *bp, int maxlen)
|
|
{
|
|
char *p;
|
|
int c, csum;
|
|
int len;
|
|
|
|
do {
|
|
p = bp;
|
|
csum = len = 0;
|
|
while ((c = getbyte()) != KGDB_START)
|
|
;
|
|
|
|
while ((c = getbyte()) != KGDB_END && len < maxlen) {
|
|
c &= 0x7f;
|
|
csum += c;
|
|
*p++ = c;
|
|
len++;
|
|
}
|
|
csum &= 0xff;
|
|
*p = '\0';
|
|
|
|
if (len >= maxlen) {
|
|
putbyte(KGDB_BADP);
|
|
continue;
|
|
}
|
|
|
|
csum -= digit2i(getbyte()) * 16;
|
|
csum -= digit2i(getbyte());
|
|
|
|
if (csum == 0) {
|
|
putbyte(KGDB_GOODP);
|
|
// Sequence present?
|
|
if (bp[2] == ':') {
|
|
putbyte(bp[0]);
|
|
putbyte(bp[1]);
|
|
len -= 3;
|
|
bcopy(bp + 3, bp, len);
|
|
}
|
|
break;
|
|
}
|
|
putbyte(KGDB_BADP);
|
|
} while (1);
|
|
|
|
DPRINTF(GDBRecv, "recv: %s: %s\n", gdb_command(*bp), bp);
|
|
|
|
return (len);
|
|
}
|
|
|
|
// Read bytes from kernel address space for debugger.
|
|
bool
|
|
RemoteGDB::read(Addr vaddr, size_t size, char *data)
|
|
{
|
|
static Addr lastaddr = 0;
|
|
static size_t lastsize = 0;
|
|
|
|
uint8_t *maddr;
|
|
|
|
if (vaddr < 10) {
|
|
DPRINTF(GDBRead, "read: reading memory location zero!\n");
|
|
vaddr = lastaddr + lastsize;
|
|
}
|
|
|
|
DPRINTF(GDBRead, "read: addr=%#x, size=%d", vaddr, size);
|
|
#if TRACING_ON
|
|
char *d = data;
|
|
size_t s = size;
|
|
#endif
|
|
|
|
lastaddr = vaddr;
|
|
lastsize = size;
|
|
|
|
size_t count = min((Addr)size,
|
|
VMPageSize - (vaddr & (VMPageSize - 1)));
|
|
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(data, maddr, count);
|
|
|
|
vaddr += count;
|
|
data += count;
|
|
size -= count;
|
|
|
|
while (size >= VMPageSize) {
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(data, maddr, VMPageSize);
|
|
|
|
vaddr += VMPageSize;
|
|
data += VMPageSize;
|
|
size -= VMPageSize;
|
|
}
|
|
|
|
if (size > 0) {
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(data, maddr, size);
|
|
}
|
|
|
|
#if TRACING_ON
|
|
if (DTRACE(GDBRead)) {
|
|
if (DTRACE(GDBExtra)) {
|
|
char buf[1024];
|
|
mem2hex(buf, d, s);
|
|
DPRINTFNR(": %s\n", buf);
|
|
} else
|
|
DPRINTFNR("\n");
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// Write bytes to kernel address space for debugger.
|
|
bool
|
|
RemoteGDB::write(Addr vaddr, size_t size, const char *data)
|
|
{
|
|
static Addr lastaddr = 0;
|
|
static size_t lastsize = 0;
|
|
|
|
uint8_t *maddr;
|
|
|
|
if (vaddr < 10) {
|
|
DPRINTF(GDBWrite, "write: writing memory location zero!\n");
|
|
vaddr = lastaddr + lastsize;
|
|
}
|
|
|
|
if (DTRACE(GDBWrite)) {
|
|
DPRINTFN("write: addr=%#x, size=%d", vaddr, size);
|
|
if (DTRACE(GDBExtra)) {
|
|
char buf[1024];
|
|
mem2hex(buf, data, size);
|
|
DPRINTFNR(": %s\n", buf);
|
|
} else
|
|
DPRINTFNR("\n");
|
|
}
|
|
|
|
lastaddr = vaddr;
|
|
lastsize = size;
|
|
|
|
size_t count = min((Addr)size,
|
|
VMPageSize - (vaddr & (VMPageSize - 1)));
|
|
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(maddr, data, count);
|
|
|
|
vaddr += count;
|
|
data += count;
|
|
size -= count;
|
|
|
|
while (size >= VMPageSize) {
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(maddr, data, VMPageSize);
|
|
|
|
vaddr += VMPageSize;
|
|
data += VMPageSize;
|
|
size -= VMPageSize;
|
|
}
|
|
|
|
if (size > 0) {
|
|
maddr = vtomem(context, vaddr, count);
|
|
memcpy(maddr, data, size);
|
|
}
|
|
|
|
#ifdef IMB
|
|
alpha_pal_imb();
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
PCEventQueue *RemoteGDB::getPcEventQueue()
|
|
{
|
|
return &system->pcEventQueue;
|
|
}
|
|
|
|
|
|
RemoteGDB::HardBreakpoint::HardBreakpoint(RemoteGDB *_gdb, Addr pc)
|
|
: PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc),
|
|
gdb(_gdb), refcount(0)
|
|
{
|
|
DPRINTF(GDBMisc, "creating hardware breakpoint at %#x\n", evpc);
|
|
}
|
|
|
|
void
|
|
RemoteGDB::HardBreakpoint::process(ExecContext *xc)
|
|
{
|
|
DPRINTF(GDBMisc, "handling hardware breakpoint at %#x\n", pc());
|
|
|
|
if (xc == gdb->context)
|
|
gdb->trap(ALPHA_KENTRY_INT);
|
|
}
|
|
|
|
bool
|
|
RemoteGDB::insertSoftBreak(Addr addr, size_t len)
|
|
{
|
|
if (len != sizeof(MachInst))
|
|
panic("invalid length\n");
|
|
|
|
return insertHardBreak(addr, len);
|
|
}
|
|
|
|
bool
|
|
RemoteGDB::removeSoftBreak(Addr addr, size_t len)
|
|
{
|
|
if (len != sizeof(MachInst))
|
|
panic("invalid length\n");
|
|
|
|
return removeHardBreak(addr, len);
|
|
}
|
|
|
|
bool
|
|
RemoteGDB::insertHardBreak(Addr addr, size_t len)
|
|
{
|
|
if (len != sizeof(MachInst))
|
|
panic("invalid length\n");
|
|
|
|
DPRINTF(GDBMisc, "inserting hardware breakpoint at %#x\n", addr);
|
|
|
|
HardBreakpoint *&bkpt = hardBreakMap[addr];
|
|
if (bkpt == 0)
|
|
bkpt = new HardBreakpoint(this, addr);
|
|
|
|
bkpt->refcount++;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
RemoteGDB::removeHardBreak(Addr addr, size_t len)
|
|
{
|
|
if (len != sizeof(MachInst))
|
|
panic("invalid length\n");
|
|
|
|
DPRINTF(GDBMisc, "removing hardware breakpoint at %#x\n", addr);
|
|
|
|
break_iter_t i = hardBreakMap.find(addr);
|
|
if (i == hardBreakMap.end())
|
|
return false;
|
|
|
|
HardBreakpoint *hbp = (*i).second;
|
|
if (--hbp->refcount == 0) {
|
|
delete hbp;
|
|
hardBreakMap.erase(i);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const char *
|
|
break_type(char c)
|
|
{
|
|
switch(c) {
|
|
case '0': return "software breakpoint";
|
|
case '1': return "hardware breakpoint";
|
|
case '2': return "write watchpoint";
|
|
case '3': return "read watchpoint";
|
|
case '4': return "access watchpoint";
|
|
default: return "unknown breakpoint/watchpoint";
|
|
}
|
|
}
|
|
|
|
// This function does all command processing for interfacing to a
|
|
// remote gdb. Note that the error codes are ignored by gdb at
|
|
// present, but might eventually become meaningful. (XXX) It might
|
|
// makes sense to use POSIX errno values, because that is what the
|
|
// gdb/remote.c functions want to return.
|
|
bool
|
|
RemoteGDB::trap(int type)
|
|
{
|
|
uint64_t val;
|
|
size_t datalen, len;
|
|
char data[KGDB_BUFLEN + 1];
|
|
char buffer[sizeof(gdbregs) * 2 + 256];
|
|
char temp[KGDB_BUFLEN];
|
|
const char *p;
|
|
char command, subcmd;
|
|
string var;
|
|
bool ret;
|
|
|
|
if (!attached)
|
|
return false;
|
|
|
|
DPRINTF(GDBMisc, "trap: PC=%#x NPC=%#x\n",
|
|
context->regs.pc, context->regs.npc);
|
|
|
|
clearSingleStep();
|
|
|
|
/*
|
|
* The first entry to this function is normally through
|
|
* a breakpoint trap in kgdb_connect(), in which case we
|
|
* must advance past the breakpoint because gdb will not.
|
|
*
|
|
* On the first entry here, we expect that gdb is not yet
|
|
* listening to us, so just enter the interaction loop.
|
|
* After the debugger is "active" (connected) it will be
|
|
* waiting for a "signaled" message from us.
|
|
*/
|
|
if (!active)
|
|
active = true;
|
|
else
|
|
// Tell remote host that an exception has occurred.
|
|
snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
|
|
send(buffer);
|
|
|
|
// Stick frame regs into our reg cache.
|
|
getregs();
|
|
|
|
for (;;) {
|
|
datalen = recv(data, sizeof(data));
|
|
data[sizeof(data) - 1] = 0; // Sentinel
|
|
command = data[0];
|
|
subcmd = 0;
|
|
p = data + 1;
|
|
switch (command) {
|
|
|
|
case KGDB_SIGNAL:
|
|
// if this command came from a running gdb, answer it --
|
|
// the other guy has no way of knowing if we're in or out
|
|
// of this loop when he issues a "remote-signal".
|
|
snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
|
|
send(buffer);
|
|
continue;
|
|
|
|
case KGDB_REG_R:
|
|
if (2 * sizeof(gdbregs) > sizeof(buffer))
|
|
panic("buffer too small");
|
|
|
|
mem2hex(buffer, gdbregs, sizeof(gdbregs));
|
|
send(buffer);
|
|
continue;
|
|
|
|
case KGDB_REG_W:
|
|
p = hex2mem(gdbregs, p, sizeof(gdbregs));
|
|
if (p == NULL || *p != '\0')
|
|
send("E01");
|
|
else {
|
|
setregs();
|
|
send("OK");
|
|
}
|
|
continue;
|
|
|
|
#if 0
|
|
case KGDB_SET_REG:
|
|
val = hex2i(&p);
|
|
if (*p++ != '=') {
|
|
send("E01");
|
|
continue;
|
|
}
|
|
if (val < 0 && val >= KGDB_NUMREGS) {
|
|
send("E01");
|
|
continue;
|
|
}
|
|
|
|
gdbregs[val] = hex2i(&p);
|
|
setregs();
|
|
send("OK");
|
|
|
|
continue;
|
|
#endif
|
|
|
|
case KGDB_MEM_R:
|
|
val = hex2i(&p);
|
|
if (*p++ != ',') {
|
|
send("E02");
|
|
continue;
|
|
}
|
|
len = hex2i(&p);
|
|
if (*p != '\0') {
|
|
send("E03");
|
|
continue;
|
|
}
|
|
if (len > sizeof(buffer)) {
|
|
send("E04");
|
|
continue;
|
|
}
|
|
if (!acc(val, len)) {
|
|
send("E05");
|
|
continue;
|
|
}
|
|
|
|
if (read(val, (size_t)len, (char *)buffer)) {
|
|
mem2hex(temp, buffer, len);
|
|
send(temp);
|
|
} else {
|
|
send("E05");
|
|
}
|
|
continue;
|
|
|
|
case KGDB_MEM_W:
|
|
val = hex2i(&p);
|
|
if (*p++ != ',') {
|
|
send("E06");
|
|
continue;
|
|
}
|
|
len = hex2i(&p);
|
|
if (*p++ != ':') {
|
|
send("E07");
|
|
continue;
|
|
}
|
|
if (len > datalen - (p - data)) {
|
|
send("E08");
|
|
continue;
|
|
}
|
|
p = hex2mem(buffer, p, sizeof(buffer));
|
|
if (p == NULL) {
|
|
send("E09");
|
|
continue;
|
|
}
|
|
if (!acc(val, len)) {
|
|
send("E0A");
|
|
continue;
|
|
}
|
|
if (write(val, (size_t)len, (char *)buffer))
|
|
send("OK");
|
|
else
|
|
send("E0B");
|
|
continue;
|
|
|
|
case KGDB_SET_THREAD:
|
|
subcmd = *p++;
|
|
val = hex2i(&p);
|
|
if (val == 0)
|
|
send("OK");
|
|
else
|
|
send("E01");
|
|
continue;
|
|
|
|
case KGDB_DETACH:
|
|
case KGDB_KILL:
|
|
active = false;
|
|
clearSingleStep();
|
|
detach();
|
|
goto out;
|
|
|
|
case KGDB_ASYNC_CONT:
|
|
subcmd = hex2i(&p);
|
|
if (*p++ == ';') {
|
|
val = hex2i(&p);
|
|
context->regs.pc = val;
|
|
context->regs.npc = val + sizeof(MachInst);
|
|
}
|
|
clearSingleStep();
|
|
goto out;
|
|
|
|
case KGDB_CONT:
|
|
if (p - data < datalen) {
|
|
val = hex2i(&p);
|
|
context->regs.pc = val;
|
|
context->regs.npc = val + sizeof(MachInst);
|
|
}
|
|
clearSingleStep();
|
|
goto out;
|
|
|
|
case KGDB_ASYNC_STEP:
|
|
subcmd = hex2i(&p);
|
|
if (*p++ == ';') {
|
|
val = hex2i(&p);
|
|
context->regs.pc = val;
|
|
context->regs.npc = val + sizeof(MachInst);
|
|
}
|
|
setSingleStep();
|
|
goto out;
|
|
|
|
case KGDB_STEP:
|
|
if (p - data < datalen) {
|
|
val = hex2i(&p);
|
|
context->regs.pc = val;
|
|
context->regs.npc = val + sizeof(MachInst);
|
|
}
|
|
setSingleStep();
|
|
goto out;
|
|
|
|
case KGDB_CLR_HW_BKPT:
|
|
subcmd = *p++;
|
|
if (*p++ != ',') send("E0D");
|
|
val = hex2i(&p);
|
|
if (*p++ != ',') send("E0D");
|
|
len = hex2i(&p);
|
|
|
|
DPRINTF(GDBMisc, "clear %s, addr=%#x, len=%d\n",
|
|
break_type(subcmd), val, len);
|
|
|
|
ret = false;
|
|
|
|
switch (subcmd) {
|
|
case '0': // software breakpoint
|
|
ret = removeSoftBreak(val, len);
|
|
break;
|
|
|
|
case '1': // hardware breakpoint
|
|
ret = removeHardBreak(val, len);
|
|
break;
|
|
|
|
case '2': // write watchpoint
|
|
case '3': // read watchpoint
|
|
case '4': // access watchpoint
|
|
default: // unknown
|
|
send("");
|
|
break;
|
|
}
|
|
|
|
send(ret ? "OK" : "E0C");
|
|
continue;
|
|
|
|
case KGDB_SET_HW_BKPT:
|
|
subcmd = *p++;
|
|
if (*p++ != ',') send("E0D");
|
|
val = hex2i(&p);
|
|
if (*p++ != ',') send("E0D");
|
|
len = hex2i(&p);
|
|
|
|
DPRINTF(GDBMisc, "set %s, addr=%#x, len=%d\n",
|
|
break_type(subcmd), val, len);
|
|
|
|
ret = false;
|
|
|
|
switch (subcmd) {
|
|
case '0': // software breakpoint
|
|
ret = insertSoftBreak(val, len);
|
|
break;
|
|
|
|
case '1': // hardware breakpoint
|
|
ret = insertHardBreak(val, len);
|
|
break;
|
|
|
|
case '2': // write watchpoint
|
|
case '3': // read watchpoint
|
|
case '4': // access watchpoint
|
|
default: // unknown
|
|
send("");
|
|
break;
|
|
}
|
|
|
|
send(ret ? "OK" : "E0C");
|
|
continue;
|
|
|
|
case KGDB_QUERY_VAR:
|
|
var = string(p, datalen - 1);
|
|
if (var == "C")
|
|
send("QC0");
|
|
else
|
|
send("");
|
|
continue;
|
|
|
|
case KGDB_SET_BAUD:
|
|
case KGDB_SET_BREAK:
|
|
case KGDB_DEBUG:
|
|
case KGDB_CYCLE_STEP:
|
|
case KGDB_SIG_CYCLE_STEP:
|
|
case KGDB_READ_REG:
|
|
case KGDB_SET_VAR:
|
|
case KGDB_RESET:
|
|
case KGDB_THREAD_ALIVE:
|
|
case KGDB_TARGET_EXIT:
|
|
case KGDB_BINARY_DLOAD:
|
|
// Unsupported command
|
|
DPRINTF(GDBMisc, "Unsupported command: %s\n",
|
|
gdb_command(command));
|
|
DDUMP(GDBMisc, (uint8_t *)data, datalen);
|
|
send("");
|
|
continue;
|
|
|
|
default:
|
|
// Unknown command.
|
|
DPRINTF(GDBMisc, "Unknown command: %c(%#x)\n",
|
|
command, command);
|
|
send("");
|
|
continue;
|
|
|
|
|
|
}
|
|
}
|
|
|
|
out:
|
|
return true;
|
|
}
|
|
|
|
// Convert a hex digit into an integer.
|
|
// This returns -1 if the argument passed is no valid hex digit.
|
|
int
|
|
digit2i(char c)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
return (c - '0');
|
|
else if (c >= 'a' && c <= 'f')
|
|
return (c - 'a' + 10);
|
|
else if (c >= 'A' && c <= 'F')
|
|
|
|
return (c - 'A' + 10);
|
|
else
|
|
return (-1);
|
|
}
|
|
|
|
// Convert the low 4 bits of an integer into an hex digit.
|
|
char
|
|
i2digit(int n)
|
|
{
|
|
return ("0123456789abcdef"[n & 0x0f]);
|
|
}
|
|
|
|
// Convert a byte array into an hex string.
|
|
void
|
|
mem2hex(void *vdst, const void *vsrc, int len)
|
|
{
|
|
char *dst = (char *)vdst;
|
|
const char *src = (const char *)vsrc;
|
|
|
|
while (len--) {
|
|
*dst++ = i2digit(*src >> 4);
|
|
*dst++ = i2digit(*src++);
|
|
}
|
|
*dst = '\0';
|
|
}
|
|
|
|
// Convert an hex string into a byte array.
|
|
// This returns a pointer to the character following the last valid
|
|
// hex digit. If the string ends in the middle of a byte, NULL is
|
|
// returned.
|
|
const char *
|
|
hex2mem(void *vdst, const char *src, int maxlen)
|
|
{
|
|
char *dst = (char *)vdst;
|
|
int msb, lsb;
|
|
|
|
while (*src && maxlen--) {
|
|
msb = digit2i(*src++);
|
|
if (msb < 0)
|
|
return (src - 1);
|
|
lsb = digit2i(*src++);
|
|
if (lsb < 0)
|
|
return (NULL);
|
|
*dst++ = (msb << 4) | lsb;
|
|
}
|
|
return (src);
|
|
}
|
|
|
|
// Convert an hex string into an integer.
|
|
// This returns a pointer to the character following the last valid
|
|
// hex digit.
|
|
Addr
|
|
hex2i(const char **srcp)
|
|
{
|
|
const char *src = *srcp;
|
|
Addr r = 0;
|
|
int nibble;
|
|
|
|
while ((nibble = digit2i(*src)) >= 0) {
|
|
r *= 16;
|
|
r += nibble;
|
|
src++;
|
|
}
|
|
*srcp = src;
|
|
return (r);
|
|
}
|
|
|