gem5/cpu/base_dyn_inst.hh
Kevin Lim 21df09cf7a Fixes for ozone CPU to successfully boot and run linux.
cpu/base_dyn_inst.hh:
    Remove snoop function (did not mean to commit it).
cpu/ozone/back_end_impl.hh:
    Set instruction as having its result ready, not completed.
cpu/ozone/cpu.hh:
    Fixes for store conditionals.  Use an additional lock addr list to make sure that the access is valid.  I don't know if this is fully necessary, but it gives me a peace of mind (at some performance cost).
    Make sure to schedule for cycles(1) and not just 1 cycle in the future as tick = 1ps.
    Also support the new Checker.
cpu/ozone/cpu_builder.cc:
    Add parameter for maxOutstandingMemOps so it can be set through the config.
    Also add in the checker.  Right now it's a BaseCPU simobject, but that may change in the future.
cpu/ozone/cpu_impl.hh:
    Add support for the checker.  For now there's a dynamic cast to convert the simobject passed back from the builder to the proper Checker type.  It's ugly, but only happens at startup, and is probably a justified use of dynamic cast.

    Support switching out/taking over from other CPUs.

    Correct indexing problem for float registers.
cpu/ozone/dyn_inst.hh:
    Add ability for instructions to wait on memory instructions in addition to source register instructions.  This is needed for memory dependence predictors and memory barriers.
cpu/ozone/dyn_inst_impl.hh:
    Support waiting on memory operations.
    Use "resultReady" to differentiate an instruction having its registers produced vs being totally completed.
cpu/ozone/front_end.hh:
    Support switching out.
    Also record if an interrupt is pending.
cpu/ozone/front_end_impl.hh:
    Support switching out.  Also support stalling the front end if an interrupt is pending.
cpu/ozone/lw_back_end.hh:
    Add checker in.
    Support switching out.
    Support memory barriers.
cpu/ozone/lw_back_end_impl.hh:
    Lots of changes to get things to work right.
    Faults, traps, interrupts all wait until all stores have written back (important).
    Memory barriers are supported, as is the general ability for instructions to be dependent on other memory instructions.
cpu/ozone/lw_lsq.hh:
    Support switching out.
    Also use store writeback events in all cases, not just dcache misses.
cpu/ozone/lw_lsq_impl.hh:
    Support switching out.
    Also use store writeback events in all cases, not just dcache misses.
    Support the checker CPU.  Marks instructions as completed once the functional access is done (which has to be done for the checker to be able to verify results).
cpu/ozone/simple_params.hh:
    Add max outstanding mem ops parameter.
python/m5/objects/OzoneCPU.py:
    Add max outstanding mem ops, checker.

--HG--
extra : convert_revision : f4d408e1bb1f25836a097b6abe3856111e950c59
2006-05-11 19:18:36 -04:00

739 lines
23 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <list>
#include <string>
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/static_inst.hh"
#include "encumbered/cpu/full/op_class.hh"
#include "mem/functional/memory_control.hh"
#include "sim/system.hh"
/*
#include "encumbered/cpu/full/bpred_update.hh"
#include "encumbered/cpu/full/spec_memory.hh"
#include "encumbered/cpu/full/spec_state.hh"
#include "encumbered/mem/functional/main.hh"
*/
/**
* @file
* Defines a dynamic instruction context.
*/
// Forward declaration.
class StaticInstPtr;
template <class Impl>
class BaseDynInst : public FastAlloc, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::FullCPU FullCPU;
typedef typename FullCPU::ImplState ImplState;
// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
// Extended machine instruction type
typedef TheISA::ExtMachInst ExtMachInst;
// Logical register index type.
typedef TheISA::RegIndex RegIndex;
// Integer register index type.
typedef TheISA::IntReg IntReg;
// The DynInstPtr type.
typedef typename Impl::DynInstPtr DynInstPtr;
// The list of instructions iterator type.
typedef typename std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
};
/** The StaticInst used by this BaseDynInst. */
StaticInstPtr staticInst;
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
/** InstRecord that tracks this instructions. */
Trace::InstRecord *traceData;
/**
* Does a read to a given address.
* @param addr The address to read.
* @param data The read's data is written into this parameter.
* @param flags The request's flags.
* @return Returns any fault due to the read.
*/
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
/**
* Does a write to a given address.
* @param data The data to be written.
* @param addr The address to write to.
* @param flags The request's flags.
* @param res The result of the write (for load locked/store conditionals).
* @return Returns any fault due to the write.
*/
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res);
void prefetch(Addr addr, unsigned flags);
void writeHint(Addr addr, int size, unsigned flags);
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
/** @todo: Consider making this private. */
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
/** Is the instruction in the IQ */
bool iqEntry;
/** Is the instruction in the ROB */
bool robEntry;
/** Is the instruction in the LSQ */
bool lsqEntry;
/** Is the instruction completed. */
bool completed;
/** Is the instruction's result ready. */
bool resultReady;
/** Can this instruction issue. */
bool canIssue;
/** Has this instruction issued. */
bool issued;
/** Has this instruction executed (or made it through execute) yet. */
bool executed;
/** Can this instruction commit. */
bool canCommit;
/** Is this instruction committed. */
bool committed;
/** Is this instruction squashed. */
bool squashed;
/** Is this instruction squashed in the instruction queue. */
bool squashedInIQ;
/** Is this instruction squashed in the instruction queue. */
bool squashedInLSQ;
/** Is this instruction squashed in the instruction queue. */
bool squashedInROB;
/** Is this a recover instruction. */
bool recoverInst;
/** Is this a thread blocking instruction. */
bool blockingInst; /* this inst has called thread_block() */
/** Is this a thread syncrhonization instruction. */
bool threadsyncWait;
/** The thread this instruction is from. */
short threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** How many source registers are ready. */
unsigned readyRegs;
/** Pointer to the FullCPU object. */
FullCPU *cpu;
/** Pointer to the exec context. */
ImplState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** The memory request. */
MemReqPtr req;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The effective physical address. */
Addr physEffAddr;
/** Effective virtual address for a copy source. */
Addr copySrcEffAddr;
/** Effective physical address for a copy source. */
Addr copySrcPhysEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
/** The size of the data to be stored. */
int storeSize;
/** The data to be stored. */
IntReg storeData;
union Result {
uint64_t integer;
float fp;
double dbl;
};
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
Result instResult;
/** PC of this instruction. */
Addr PC;
/** Next non-speculative PC. It is not filled in at fetch, but rather
* once the target of the branch is truly known (either decode or
* execute).
*/
Addr nextPC;
/** Predicted next PC. */
Addr predPC;
/** Count of total number of dynamic instructions. */
static int instcount;
#ifdef DEBUG
void dumpSNList();
#endif
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
public:
/** BaseDynInst constructor given a binary instruction.
* @param inst The binary instruction.
* @param PC The PC of the instruction.
* @param pred_PC The predicted next PC.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
FullCPU *cpu);
/** BaseDynInst constructor given a StaticInst pointer.
* @param _staticInst The StaticInst for this BaseDynInst.
*/
BaseDynInst(StaticInstPtr &_staticInst);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
/**
* @todo: Make this function work; currently it is a dummy function.
* @param fault Last fault.
* @param cmd Last command.
* @param addr Virtual address of access.
* @param p Memory accessed.
* @param nbytes Access size.
*/
void
trace_mem(Fault fault,
MemCmd cmd,
Addr addr,
void *p,
int nbytes);
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
/** Returns the next PC. This could be the speculative next PC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextPC() { return nextPC; }
/** Set the predicted target of this current instruction. */
void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
/** Returns the predicted target of the branch. */
Addr readPredTarg() { return predPC; }
/** Returns whether the instruction was predicted taken or not. */
bool predTaken() { return predPC != (PC + sizeof(MachInst)); }
/** Returns whether the instruction mispredicted. */
bool mispredicted() { return predPC != nextPC; }
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isCopy() const { return staticInst->isCopy(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isSerializeBefore() const
{ return staticInst->isSerializeBefore() || serializeBefore; }
bool isSerializeAfter() const
{ return staticInst->isSerializeAfter() || serializeAfter; }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { serializeBefore = true; }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { serializeBefore = false; }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return serializeBefore; }
/** Tracks if instruction has been externally set as serializeBefore. */
bool serializeBefore;
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { serializeAfter = true; }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { serializeAfter = false; }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return serializeAfter; }
/** Tracks if instruction has been externally set as serializeAfter. */
bool serializeAfter;
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return serializeHandled; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { serializeHandled = true; }
/** Whether or not the serialization of this instruction has been handled. */
bool serializeHandled;
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
Addr branchTarget() const { return staticInst->branchTarget(PC); }
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
/** Returns the result of an integer instruction. */
uint64_t readIntResult() { return instResult.integer; }
/** Returns the result of a floating point instruction. */
float readFloatResult() { return instResult.fp; }
/** Returns the result of a floating point (double) instruction. */
double readDoubleResult() { return instResult.dbl; }
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
instResult.integer = val;
}
void setFloatRegSingle(const StaticInst *si, int idx, float val)
{
instResult.fp = val;
}
void setFloatRegDouble(const StaticInst *si, int idx, double val)
{
instResult.dbl = val;
}
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
{
instResult.integer = val;
}
//Push to .cc file.
/** Records that one of the source registers is ready. */
void markSrcRegReady();
/** Marks a specific register as ready.
* @todo: Move this to .cc file.
*/
void markSrcRegReady(RegIndex src_idx);
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { completed = true; }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return completed; }
void setResultReady() { resultReady = true; }
bool isResultReady() const { return resultReady; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { canIssue = true; }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return canIssue; }
/** Sets this instruction as issued from the IQ. */
void setIssued() { issued = true; }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return issued; }
/** Sets this instruction as executed. */
void setExecuted() { executed = true; }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return executed; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { canCommit = true; }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { canCommit = false; }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return canCommit; }
/** Sets this instruction as committed. */
void setCommitted() { committed = true; }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return committed; }
/** Sets this instruction as squashed. */
void setSquashed() { squashed = true; }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return squashed; }
//Instruction Queue Entry
//-----------------------
/** Sets this instruction as a entry the IQ. */
void setInIQ() { iqEntry = true; }
/** Sets this instruction as a entry the IQ. */
void removeInIQ() { iqEntry = false; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { squashedInIQ = true; squashed = true;}
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return squashedInIQ; }
/** Returns whether or not this instruction has issued. */
bool isInIQ() const { return iqEntry; }
//Load / Store Queue Functions
//-----------------------
/** Sets this instruction as a entry the LSQ. */
void setInLSQ() { lsqEntry = true; }
/** Sets this instruction as a entry the LSQ. */
void removeInLSQ() { lsqEntry = false; }
/** Sets this instruction as squashed in the LSQ. */
void setSquashedInLSQ() { squashedInLSQ = true;}
/** Returns whether or not this instruction is squashed in the LSQ. */
bool isSquashedInLSQ() const { return squashedInLSQ; }
/** Returns whether or not this instruction is in the LSQ. */
bool isInLSQ() const { return lsqEntry; }
//Reorder Buffer Functions
//-----------------------
/** Sets this instruction as a entry the ROB. */
void setInROB() { robEntry = true; }
/** Sets this instruction as a entry the ROB. */
void removeInROB() { robEntry = false; }
/** Sets this instruction as squashed in the ROB. */
void setSquashedInROB() { squashedInROB = true; }
/** Returns whether or not this instruction is squashed in the ROB. */
bool isSquashedInROB() const { return squashedInROB; }
/** Returns whether or not this instruction is in the ROB. */
bool isInROB() const { return robEntry; }
/** Read the PC of this instruction. */
const Addr readPC() const { return PC; }
/** Set the next PC of this instruction (its actual target). */
void setNextPC(uint64_t val)
{
nextPC = val;
// instResult.integer = val;
}
void setASID(short addr_space_id) { asid = addr_space_id; }
void setThread(unsigned tid) { threadNumber = tid; }
void setState(ImplState *state) { thread = state; }
/** Returns the exec context.
* @todo: Remove this once the ExecContext is no longer used.
*/
ExecContext *xcBase() { return thread->getXCProxy(); }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
public:
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return req->vaddr; }
/** Returns whether or not the eff. addr. calculation has been completed. */
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady();
/** Whether or not the memory operation is done. */
bool memOpDone;
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
bool reachedCommit;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
/** Returns iterator to this instruction in the list of all insts. */
ListIt &getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
};
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
{
if (executed) {
fault = cpu->read(req, data, lqIdx);
return fault;
}
req = new MemReq(addr, thread->getXCProxy(), sizeof(T), flags);
req->asid = asid;
req->thread_num = threadNumber;
req->pc = this->PC;
if ((req->vaddr & (TheISA::VMPageSize - 1)) + req->size >
TheISA::VMPageSize) {
return TheISA::genAlignmentFault();
}
fault = cpu->translateDataReadReq(req);
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
if (fault == NoFault) {
#if FULL_SYSTEM
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
data = (T)-1;
this->setExecuted();
} else {
fault = cpu->read(req, data, lqIdx);
}
#else
fault = cpu->read(req, data, lqIdx);
#endif
} else {
// Return a fixed value to keep simulation deterministic even
// along misspeculated paths.
data = (T)-1;
// Commit will have to clean up whatever happened. Set this
// instruction as executed.
this->setExecuted();
}
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
return fault;
}
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
req = new MemReq(addr, thread->getXCProxy(), sizeof(T), flags);
req->asid = asid;
req->thread_num = threadNumber;
req->pc = this->PC;
if ((req->vaddr & (TheISA::VMPageSize - 1)) + req->size >
TheISA::VMPageSize) {
return TheISA::genAlignmentFault();
}
fault = cpu->translateDataWriteReq(req);
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
if (fault == NoFault) {
#if FULL_SYSTEM
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
} else {
fault = cpu->write(req, data, sqIdx);
}
#else
fault = cpu->write(req, data, sqIdx);
#endif
}
if (res) {
// always return some result to keep misspeculated paths
// (which will ignore faults) deterministic
*res = (fault == NoFault) ? req->result : 0;
}
return fault;
}
#endif // __CPU_BASE_DYN_INST_HH__