gem5/src/cpu/o3/decode_impl.hh
Korey Sewell 19ca97af79 This changeset gets the MIPS ISA pretty much working in the O3CPU. It builds, runs, and gets very very close to completing the hello world
succesfully but there are some minor quirks to iron out. Who would've known a DELAY SLOT introduces that much complexity?! arrgh!

Anyways, a lot of this stuff had to do with my project at MIPS and me needing to know how I was going to get this working for the MIPS
ISA. So I figured I would try to touch it up and throw it in here (I hate to introduce non-completely working components... )

src/arch/alpha/isa/mem.isa:
    spacing
src/arch/mips/faults.cc:
src/arch/mips/faults.hh:
    Gabe really authored this
src/arch/mips/isa/decoder.isa:
    add StoreConditional Flag to instruction
src/arch/mips/isa/formats/basic.isa:
    Steven really did this file
src/arch/mips/isa/formats/branch.isa:
    fix bug for uncond/cond control
src/arch/mips/isa/formats/mem.isa:
    Adjust O3CPU memory access to use new memory model interface.
src/arch/mips/isa/formats/util.isa:
    update LoadStoreBase template
src/arch/mips/isa_traits.cc:
    update SERIALIZE partially
src/arch/mips/process.cc:
src/arch/mips/process.hh:
    no need for this for NOW. ASID/Virtual addressing handles it
src/arch/mips/regfile/misc_regfile.hh:
    add in clear() function and comments for future usage of special misc. regs
src/cpu/base_dyn_inst.hh:
    add in nextNPC variable and supporting functions.

    add isCondDelaySlot function

    Update predTaken and mispredicted functions
src/cpu/base_dyn_inst_impl.hh:
    init nextNPC
src/cpu/o3/SConscript:
    add MIPS files to compile
src/cpu/o3/alpha/thread_context.hh:
    no need for my name on this file
src/cpu/o3/bpred_unit_impl.hh:
    Update RAS appropriately for MIPS
src/cpu/o3/comm.hh:
    add some extra communication variables to aid in handling the
    delay slots
src/cpu/o3/commit.hh:
    minor name fix for nextNPC functions.
src/cpu/o3/commit_impl.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/rename_impl.hh:
    Fix necessary variables and functions for squashes with delay slots
src/cpu/o3/cpu.cc:
    Update function interface ...

    adjust removeInstsNotInROB function to recognize delay slots insts
src/cpu/o3/cpu.hh:
    update removeInstsNotInROB
src/cpu/o3/decode.hh:
    declare necessary variables for handling delay slot
src/cpu/o3/dyn_inst.hh:
    Add in MipsDynInst
src/cpu/o3/fetch.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/rename.hh:
    declare necessary variables and adjust functions for handling delay slot
src/cpu/o3/inst_queue.hh:
src/cpu/simple/base.cc:
    no need for my name here
src/cpu/o3/isa_specific.hh:
    add in MIPS files
src/cpu/o3/scoreboard.hh:
    dont include alpha specific isa traits!
src/cpu/o3/thread_context.hh:
    no need for my name here, i just rearranged where the file goes
src/cpu/static_inst.hh:
    add isCondDelaySlot function
src/cpu/o3/mips/cpu.cc:
src/cpu/o3/mips/cpu.hh:
src/cpu/o3/mips/cpu_builder.cc:
src/cpu/o3/mips/cpu_impl.hh:
src/cpu/o3/mips/dyn_inst.cc:
src/cpu/o3/mips/dyn_inst.hh:
src/cpu/o3/mips/dyn_inst_impl.hh:
src/cpu/o3/mips/impl.hh:
src/cpu/o3/mips/params.hh:
src/cpu/o3/mips/thread_context.cc:
src/cpu/o3/mips/thread_context.hh:
    MIPS file for O3CPU...mirrors ALPHA definition

--HG--
extra : convert_revision : 9bb199b4085903e49ffd5a4c8ac44d11460d988c
2006-07-23 13:39:42 -04:00

821 lines
24 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#include "cpu/o3/decode.hh"
using namespace std;
template<class Impl>
DefaultDecode<Impl>::DefaultDecode(Params *params)
: renameToDecodeDelay(params->renameToDecodeDelay),
iewToDecodeDelay(params->iewToDecodeDelay),
commitToDecodeDelay(params->commitToDecodeDelay),
fetchToDecodeDelay(params->fetchToDecodeDelay),
decodeWidth(params->decodeWidth),
numThreads(params->numberOfThreads)
{
_status = Inactive;
// Setup status, make sure stall signals are clear.
for (int i = 0; i < numThreads; ++i) {
decodeStatus[i] = Idle;
stalls[i].rename = false;
stalls[i].iew = false;
stalls[i].commit = false;
squashAfterDelaySlot[i] = false;
}
// @todo: Make into a parameter
skidBufferMax = (fetchToDecodeDelay * params->fetchWidth) + decodeWidth;
}
template <class Impl>
std::string
DefaultDecode<Impl>::name() const
{
return cpu->name() + ".decode";
}
template <class Impl>
void
DefaultDecode<Impl>::regStats()
{
decodeIdleCycles
.name(name() + ".DECODE:IdleCycles")
.desc("Number of cycles decode is idle")
.prereq(decodeIdleCycles);
decodeBlockedCycles
.name(name() + ".DECODE:BlockedCycles")
.desc("Number of cycles decode is blocked")
.prereq(decodeBlockedCycles);
decodeRunCycles
.name(name() + ".DECODE:RunCycles")
.desc("Number of cycles decode is running")
.prereq(decodeRunCycles);
decodeUnblockCycles
.name(name() + ".DECODE:UnblockCycles")
.desc("Number of cycles decode is unblocking")
.prereq(decodeUnblockCycles);
decodeSquashCycles
.name(name() + ".DECODE:SquashCycles")
.desc("Number of cycles decode is squashing")
.prereq(decodeSquashCycles);
decodeBranchResolved
.name(name() + ".DECODE:BranchResolved")
.desc("Number of times decode resolved a branch")
.prereq(decodeBranchResolved);
decodeBranchMispred
.name(name() + ".DECODE:BranchMispred")
.desc("Number of times decode detected a branch misprediction")
.prereq(decodeBranchMispred);
decodeControlMispred
.name(name() + ".DECODE:ControlMispred")
.desc("Number of times decode detected an instruction incorrectly"
" predicted as a control")
.prereq(decodeControlMispred);
decodeDecodedInsts
.name(name() + ".DECODE:DecodedInsts")
.desc("Number of instructions handled by decode")
.prereq(decodeDecodedInsts);
decodeSquashedInsts
.name(name() + ".DECODE:SquashedInsts")
.desc("Number of squashed instructions handled by decode")
.prereq(decodeSquashedInsts);
}
template<class Impl>
void
DefaultDecode<Impl>::setCPU(O3CPU *cpu_ptr)
{
DPRINTF(Decode, "Setting CPU pointer.\n");
cpu = cpu_ptr;
}
template<class Impl>
void
DefaultDecode<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(Decode, "Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to write information back to fetch.
toFetch = timeBuffer->getWire(0);
// Create wires to get information from proper places in time buffer.
fromRename = timeBuffer->getWire(-renameToDecodeDelay);
fromIEW = timeBuffer->getWire(-iewToDecodeDelay);
fromCommit = timeBuffer->getWire(-commitToDecodeDelay);
}
template<class Impl>
void
DefaultDecode<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
{
DPRINTF(Decode, "Setting decode queue pointer.\n");
decodeQueue = dq_ptr;
// Setup wire to write information to proper place in decode queue.
toRename = decodeQueue->getWire(0);
}
template<class Impl>
void
DefaultDecode<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
{
DPRINTF(Decode, "Setting fetch queue pointer.\n");
fetchQueue = fq_ptr;
// Setup wire to read information from fetch queue.
fromFetch = fetchQueue->getWire(-fetchToDecodeDelay);
}
template<class Impl>
void
DefaultDecode<Impl>::setActiveThreads(list<unsigned> *at_ptr)
{
DPRINTF(Decode, "Setting active threads list pointer.\n");
activeThreads = at_ptr;
}
template <class Impl>
bool
DefaultDecode<Impl>::drain()
{
// Decode is done draining at any time.
cpu->signalDrained();
return true;
}
template <class Impl>
void
DefaultDecode<Impl>::takeOverFrom()
{
_status = Inactive;
// Be sure to reset state and clear out any old instructions.
for (int i = 0; i < numThreads; ++i) {
decodeStatus[i] = Idle;
stalls[i].rename = false;
stalls[i].iew = false;
stalls[i].commit = false;
while (!insts[i].empty())
insts[i].pop();
while (!skidBuffer[i].empty())
skidBuffer[i].pop();
branchCount[i] = 0;
}
wroteToTimeBuffer = false;
}
template<class Impl>
bool
DefaultDecode<Impl>::checkStall(unsigned tid) const
{
bool ret_val = false;
if (stalls[tid].rename) {
DPRINTF(Decode,"[tid:%i]: Stall fom Rename stage detected.\n", tid);
ret_val = true;
} else if (stalls[tid].iew) {
DPRINTF(Decode,"[tid:%i]: Stall fom IEW stage detected.\n", tid);
ret_val = true;
} else if (stalls[tid].commit) {
DPRINTF(Decode,"[tid:%i]: Stall fom Commit stage detected.\n", tid);
ret_val = true;
}
return ret_val;
}
template<class Impl>
inline bool
DefaultDecode<Impl>::fetchInstsValid()
{
return fromFetch->size > 0;
}
template<class Impl>
bool
DefaultDecode<Impl>::block(unsigned tid)
{
DPRINTF(Decode, "[tid:%u]: Blocking.\n", tid);
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
// If the decode status is blocked or unblocking then decode has not yet
// signalled fetch to unblock. In that case, there is no need to tell
// fetch to block.
if (decodeStatus[tid] != Blocked) {
// Set the status to Blocked.
decodeStatus[tid] = Blocked;
if (decodeStatus[tid] != Unblocking) {
toFetch->decodeBlock[tid] = true;
wroteToTimeBuffer = true;
}
return true;
}
return false;
}
template<class Impl>
bool
DefaultDecode<Impl>::unblock(unsigned tid)
{
// Decode is done unblocking only if the skid buffer is empty.
if (skidBuffer[tid].empty()) {
DPRINTF(Decode, "[tid:%u]: Done unblocking.\n", tid);
toFetch->decodeUnblock[tid] = true;
wroteToTimeBuffer = true;
decodeStatus[tid] = Running;
return true;
}
DPRINTF(Decode, "[tid:%u]: Currently unblocking.\n", tid);
return false;
}
template<class Impl>
void
DefaultDecode<Impl>::squash(DynInstPtr &inst, unsigned tid)
{
DPRINTF(Decode, "[tid:%i]: Squashing due to incorrect branch prediction "
"detected at decode.\n", tid);
// Send back mispredict information.
toFetch->decodeInfo[tid].branchMispredict = true;
toFetch->decodeInfo[tid].predIncorrect = true;
toFetch->decodeInfo[tid].doneSeqNum = inst->seqNum;
toFetch->decodeInfo[tid].squash = true;
toFetch->decodeInfo[tid].nextPC = inst->branchTarget();
#if THE_ISA == ALPHA_ISA
toFetch->decodeInfo[tid].branchTaken =
inst->readNextPC() != (inst->readPC() + sizeof(TheISA::MachInst));
InstSeqNum squash_seq_num = inst->seqNum;
#else
toFetch->decodeInfo[tid].branchTaken = inst->readNextNPC() !=
(inst->readNextPC() + sizeof(TheISA::MachInst));
toFetch->decodeInfo[tid].bdelayDoneSeqNum = bdelayDoneSeqNum[tid];
squashAfterDelaySlot[tid] = false;
InstSeqNum squash_seq_num = bdelayDoneSeqNum[tid];
#endif
// Might have to tell fetch to unblock.
if (decodeStatus[tid] == Blocked ||
decodeStatus[tid] == Unblocking) {
toFetch->decodeUnblock[tid] = 1;
}
// Set status to squashing.
decodeStatus[tid] = Squashing;
for (int i=0; i<fromFetch->size; i++) {
if (fromFetch->insts[i]->threadNumber == tid &&
fromFetch->insts[i]->seqNum > squash_seq_num) {
fromFetch->insts[i]->setSquashed();
}
}
// Clear the instruction list and skid buffer in case they have any
// insts in them.
while (!insts[tid].empty()) {
#if THE_ISA != ALPHA_ISA
if (insts[tid].front()->seqNum <= squash_seq_num) {
DPRINTF(Decode, "[tid:%i]: Cannot remove incoming decode "
"instructions before delay slot [sn:%i]. %i insts"
"left in decode.\n", tid, squash_seq_num,
insts[tid].size());
break;
}
#endif
insts[tid].pop();
}
while (!skidBuffer[tid].empty()) {
#if THE_ISA != ALPHA_ISA
if (skidBuffer[tid].front()->seqNum <= squash_seq_num) {
DPRINTF(Decode, "[tid:%i]: Cannot remove skidBuffer "
"instructions before delay slot [sn:%i]. %i insts"
"left in decode.\n", tid, squash_seq_num,
insts[tid].size());
break;
}
#endif
skidBuffer[tid].pop();
}
// Squash instructions up until this one
cpu->removeInstsUntil(squash_seq_num, tid);
}
template<class Impl>
unsigned
DefaultDecode<Impl>::squash(unsigned tid)
{
DPRINTF(Decode, "[tid:%i]: Squashing.\n",tid);
if (decodeStatus[tid] == Blocked ||
decodeStatus[tid] == Unblocking) {
#if !FULL_SYSTEM
// In syscall emulation, we can have both a block and a squash due
// to a syscall in the same cycle. This would cause both signals to
// be high. This shouldn't happen in full system.
// @todo: Determine if this still happens.
if (toFetch->decodeBlock[tid]) {
toFetch->decodeBlock[tid] = 0;
} else {
toFetch->decodeUnblock[tid] = 1;
}
#else
toFetch->decodeUnblock[tid] = 1;
#endif
}
// Set status to squashing.
decodeStatus[tid] = Squashing;
// Go through incoming instructions from fetch and squash them.
unsigned squash_count = 0;
for (int i=0; i<fromFetch->size; i++) {
if (fromFetch->insts[i]->threadNumber == tid) {
fromFetch->insts[i]->setSquashed();
squash_count++;
}
}
// Clear the instruction list and skid buffer in case they have any
// insts in them.
while (!insts[tid].empty()) {
insts[tid].pop();
}
while (!skidBuffer[tid].empty()) {
skidBuffer[tid].pop();
}
return squash_count;
}
template<class Impl>
void
DefaultDecode<Impl>::skidInsert(unsigned tid)
{
DynInstPtr inst = NULL;
while (!insts[tid].empty()) {
inst = insts[tid].front();
insts[tid].pop();
assert(tid == inst->threadNumber);
DPRINTF(Decode,"Inserting [sn:%lli] PC:%#x into decode skidBuffer %i\n",
inst->seqNum, inst->readPC(), inst->threadNumber);
skidBuffer[tid].push(inst);
}
// @todo: Eventually need to enforce this by not letting a thread
// fetch past its skidbuffer
assert(skidBuffer[tid].size() <= skidBufferMax);
}
template<class Impl>
bool
DefaultDecode<Impl>::skidsEmpty()
{
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
if (!skidBuffer[*threads++].empty())
return false;
}
return true;
}
template<class Impl>
void
DefaultDecode<Impl>::updateStatus()
{
bool any_unblocking = false;
list<unsigned>::iterator threads = (*activeThreads).begin();
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (decodeStatus[tid] == Unblocking) {
any_unblocking = true;
break;
}
}
// Decode will have activity if it's unblocking.
if (any_unblocking) {
if (_status == Inactive) {
_status = Active;
DPRINTF(Activity, "Activating stage.\n");
cpu->activateStage(O3CPU::DecodeIdx);
}
} else {
// If it's not unblocking, then decode will not have any internal
// activity. Switch it to inactive.
if (_status == Active) {
_status = Inactive;
DPRINTF(Activity, "Deactivating stage.\n");
cpu->deactivateStage(O3CPU::DecodeIdx);
}
}
}
template <class Impl>
void
DefaultDecode<Impl>::sortInsts()
{
int insts_from_fetch = fromFetch->size;
#ifdef DEBUG
for (int i=0; i < numThreads; i++)
assert(insts[i].empty());
#endif
for (int i = 0; i < insts_from_fetch; ++i) {
insts[fromFetch->insts[i]->threadNumber].push(fromFetch->insts[i]);
}
}
template<class Impl>
void
DefaultDecode<Impl>::readStallSignals(unsigned tid)
{
if (fromRename->renameBlock[tid]) {
stalls[tid].rename = true;
}
if (fromRename->renameUnblock[tid]) {
assert(stalls[tid].rename);
stalls[tid].rename = false;
}
if (fromIEW->iewBlock[tid]) {
stalls[tid].iew = true;
}
if (fromIEW->iewUnblock[tid]) {
assert(stalls[tid].iew);
stalls[tid].iew = false;
}
if (fromCommit->commitBlock[tid]) {
stalls[tid].commit = true;
}
if (fromCommit->commitUnblock[tid]) {
assert(stalls[tid].commit);
stalls[tid].commit = false;
}
}
template <class Impl>
bool
DefaultDecode<Impl>::checkSignalsAndUpdate(unsigned tid)
{
// Check if there's a squash signal, squash if there is.
// Check stall signals, block if necessary.
// If status was blocked
// Check if stall conditions have passed
// if so then go to unblocking
// If status was Squashing
// check if squashing is not high. Switch to running this cycle.
// Update the per thread stall statuses.
readStallSignals(tid);
// Check squash signals from commit.
if (fromCommit->commitInfo[tid].squash) {
DPRINTF(Decode, "[tid:%u]: Squashing instructions due to squash "
"from commit.\n", tid);
squash(tid);
return true;
}
// Check ROB squash signals from commit.
if (fromCommit->commitInfo[tid].robSquashing) {
DPRINTF(Decode, "[tid:%u]: ROB is still squashing.\n", tid);
// Continue to squash.
decodeStatus[tid] = Squashing;
return true;
}
if (checkStall(tid)) {
return block(tid);
}
if (decodeStatus[tid] == Blocked) {
DPRINTF(Decode, "[tid:%u]: Done blocking, switching to unblocking.\n",
tid);
decodeStatus[tid] = Unblocking;
unblock(tid);
return true;
}
if (decodeStatus[tid] == Squashing) {
// Switch status to running if decode isn't being told to block or
// squash this cycle.
DPRINTF(Decode, "[tid:%u]: Done squashing, switching to running.\n",
tid);
decodeStatus[tid] = Running;
return false;
}
// If we've reached this point, we have not gotten any signals that
// cause decode to change its status. Decode remains the same as before.
return false;
}
template<class Impl>
void
DefaultDecode<Impl>::tick()
{
wroteToTimeBuffer = false;
bool status_change = false;
toRenameIndex = 0;
list<unsigned>::iterator threads = (*activeThreads).begin();
sortInsts();
//Check stall and squash signals.
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
DPRINTF(Decode,"Processing [tid:%i]\n",tid);
status_change = checkSignalsAndUpdate(tid) || status_change;
decode(status_change, tid);
}
if (status_change) {
updateStatus();
}
if (wroteToTimeBuffer) {
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
}
template<class Impl>
void
DefaultDecode<Impl>::decode(bool &status_change, unsigned tid)
{
// If status is Running or idle,
// call decodeInsts()
// If status is Unblocking,
// buffer any instructions coming from fetch
// continue trying to empty skid buffer
// check if stall conditions have passed
if (decodeStatus[tid] == Blocked) {
++decodeBlockedCycles;
} else if (decodeStatus[tid] == Squashing) {
++decodeSquashCycles;
}
// Decode should try to decode as many instructions as its bandwidth
// will allow, as long as it is not currently blocked.
if (decodeStatus[tid] == Running ||
decodeStatus[tid] == Idle) {
DPRINTF(Decode, "[tid:%u]: Not blocked, so attempting to run "
"stage.\n",tid);
decodeInsts(tid);
} else if (decodeStatus[tid] == Unblocking) {
// Make sure that the skid buffer has something in it if the
// status is unblocking.
assert(!skidsEmpty());
// If the status was unblocking, then instructions from the skid
// buffer were used. Remove those instructions and handle
// the rest of unblocking.
decodeInsts(tid);
if (fetchInstsValid()) {
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
}
status_change = unblock(tid) || status_change;
}
}
template <class Impl>
void
DefaultDecode<Impl>::decodeInsts(unsigned tid)
{
// Instructions can come either from the skid buffer or the list of
// instructions coming from fetch, depending on decode's status.
int insts_available = decodeStatus[tid] == Unblocking ?
skidBuffer[tid].size() : insts[tid].size();
if (insts_available == 0) {
DPRINTF(Decode, "[tid:%u] Nothing to do, breaking out"
" early.\n",tid);
// Should I change the status to idle?
++decodeIdleCycles;
return;
} else if (decodeStatus[tid] == Unblocking) {
DPRINTF(Decode, "[tid:%u] Unblocking, removing insts from skid "
"buffer.\n",tid);
++decodeUnblockCycles;
} else if (decodeStatus[tid] == Running) {
++decodeRunCycles;
}
DynInstPtr inst;
std::queue<DynInstPtr>
&insts_to_decode = decodeStatus[tid] == Unblocking ?
skidBuffer[tid] : insts[tid];
DPRINTF(Decode, "[tid:%u]: Sending instruction to rename.\n",tid);
while (insts_available > 0 && toRenameIndex < decodeWidth) {
assert(!insts_to_decode.empty());
inst = insts_to_decode.front();
insts_to_decode.pop();
DPRINTF(Decode, "[tid:%u]: Processing instruction [sn:%lli] with "
"PC %#x\n",
tid, inst->seqNum, inst->readPC());
if (inst->isSquashed()) {
DPRINTF(Decode, "[tid:%u]: Instruction %i with PC %#x is "
"squashed, skipping.\n",
tid, inst->seqNum, inst->readPC());
++decodeSquashedInsts;
--insts_available;
continue;
}
// Also check if instructions have no source registers. Mark
// them as ready to issue at any time. Not sure if this check
// should exist here or at a later stage; however it doesn't matter
// too much for function correctness.
if (inst->numSrcRegs() == 0) {
inst->setCanIssue();
}
// This current instruction is valid, so add it into the decode
// queue. The next instruction may not be valid, so check to
// see if branches were predicted correctly.
toRename->insts[toRenameIndex] = inst;
++(toRename->size);
++toRenameIndex;
++decodeDecodedInsts;
--insts_available;
// Ensure that if it was predicted as a branch, it really is a
// branch.
if (inst->predTaken() && !inst->isControl()) {
DPRINTF(Decode, "PredPC : %#x != NextPC: %#x\n",inst->predPC,
inst->nextPC + 4);
panic("Instruction predicted as a branch!");
++decodeControlMispred;
// Might want to set some sort of boolean and just do
// a check at the end
squash(inst, inst->threadNumber);
break;
}
// Go ahead and compute any PC-relative branches.
if (inst->isDirectCtrl() && inst->isUncondCtrl()) {
++decodeBranchResolved;
if (inst->branchTarget() != inst->readPredTarg()) {
++decodeBranchMispred;
// Might want to set some sort of boolean and just do
// a check at the end
#if THE_ISA == ALPHA_ISA
squash(inst, inst->threadNumber);
inst->setPredTarg(inst->branchTarget());
break;
#else
// If mispredicted as taken, then ignore delay slot
// instruction... else keep delay slot and squash
// after it is sent to rename
if (inst->predTaken() && inst->isCondDelaySlot()) {
DPRINTF(Decode, "[tid:%i]: Conditional delay slot inst."
"[sn:%i] PC %#x mispredicted as taken.\n", tid,
inst->seqNum, inst->PC);
bdelayDoneSeqNum[tid] = inst->seqNum;
squash(inst, inst->threadNumber);
inst->setPredTarg(inst->branchTarget());
break;
} else {
DPRINTF(Decode, "[tid:%i]: Misprediction detected at "
"[sn:%i] PC %#x, will squash after delay slot "
"inst. is sent to Rename\n",
tid, inst->seqNum, inst->PC);
bdelayDoneSeqNum[tid] = inst->seqNum + 1;
squashAfterDelaySlot[tid] = true;
squashInst[tid] = inst;
continue;
}
#endif
}
}
if (squashAfterDelaySlot[tid]) {
assert(!inst->isSquashed());
squash(squashInst[tid], squashInst[tid]->threadNumber);
squashInst[tid]->setPredTarg(squashInst[tid]->branchTarget());
assert(!inst->isSquashed());
break;
}
}
// If we didn't process all instructions, then we will need to block
// and put all those instructions into the skid buffer.
if (!insts_to_decode.empty()) {
block(tid);
}
// Record that decode has written to the time buffer for activity
// tracking.
if (toRenameIndex) {
wroteToTimeBuffer = true;
}
}