gem5/cpu/simple_cpu/simple_cpu.cc
Nathan Binkert 5eab6c4b41 Make the notion of a global event tick independent of the actual
CPU cycle ticks.  This allows the user to have CPUs of different
frequencies, and also allows frequencies and latencies that are
not evenly divisible by the CPU frequency.  For now, the CPU
frequency is still set to the global frequency, but soon, we'll
hopefully make the global frequency fixed at something like 1THz
and set all other frequencies independently.

arch/alpha/ev5.cc:
    The cycles counter is based on the current cpu cycle.
cpu/base_cpu.cc:
    frequency isn't the cpu parameter anymore, cycleTime is.
cpu/base_cpu.hh:
    frequency isn't the cpu parameter anymore, cycleTime is.
    create several public functions for getting the cpu frequency
    and the numbers of ticks for a given number of cycles, etc.
cpu/memtest/memtest.cc:
cpu/simple_cpu/simple_cpu.cc:
cpu/simple_cpu/simple_cpu.hh:
cpu/trace/trace_cpu.cc:
    Now that ticks aren't cpu cycles, fixup code to advance
    by the proper number of ticks.
cpu/memtest/memtest.hh:
cpu/trace/trace_cpu.hh:
    Provide a function to get the number of ticks for a given
    number of cycles.
dev/alpha_console.cc:
    Update for changes in the way that frequencies and latencies are
    accessed.  Move some stuff to init()
dev/alpha_console.hh:
    Need a pointer to the system and the cpu to get the frequency
    so we can pass the info to the console code.
dev/etherbus.cc:
dev/etherbus.hh:
dev/etherlink.cc:
dev/etherlink.hh:
dev/ethertap.cc:
dev/ide_disk.hh:
dev/ns_gige.cc:
dev/ns_gige.hh:
    update for changes in the way bandwidths are passed from
    python to C++ to accomidate the new way that ticks works.
dev/ide_disk.cc:
    update for changes in the way bandwidths are passed from
    python to C++ to accomidate the new way that ticks works.
    Add some extra debugging printfs
dev/platform.cc:
dev/sinic.cc:
dev/sinic.hh:
    outline the constructor and destructor
dev/platform.hh:
    outline the constructor and destructor.
    don't keep track of the interrupt frequency.  Only provide the
    accessor function.
dev/tsunami.cc:
dev/tsunami.hh:
    outline the constructor and destructor
    Don't set the interrupt frequency here.  Get it from the actual device
    that does the interrupting.
dev/tsunami_io.cc:
dev/tsunami_io.hh:
    Make the interrupt interval a configuration parameter.  (And convert
    the interval to the new latency/frequency stuff in the python)
kern/linux/linux_system.cc:
    update for changes in the way bandwidths are passed from
    python to C++ to accomidate the new way that ticks works.
    For now, we must get the boot cpu's frequency as a parameter
    since allowing the system to have a pointer to the boot cpu would
    cause a cycle.
kern/tru64/tru64_system.cc:
    For now, we must get the boot cpu's frequency as a parameter
    since allowing the system to have a pointer to the boot cpu would
    cause a cycle.
python/m5/config.py:
    Fix support for cycle_time relative latencies and frequencies.
    Add support for getting a NetworkBandwidth or a MemoryBandwidth.
python/m5/objects/BaseCPU.mpy:
    All CPUs now have a cycle_time.  The default is the global frequency,
    but it is now possible to set the global frequency to some large value
    (like 1THz) and set each CPU frequency independently.
python/m5/objects/BaseCache.mpy:
python/m5/objects/Ide.mpy:
    Make this a Latency parameter
python/m5/objects/BaseSystem.mpy:
    We need to pass the boot CPU's frequency to the system
python/m5/objects/Ethernet.mpy:
    Update parameter types to use latency and bandwidth types
python/m5/objects/Platform.mpy:
    this frequency isn't needed.  We get it from the clock interrupt.
python/m5/objects/Tsunami.mpy:
    The clock generator should hold the frequency
sim/eventq.hh:
    Need to remove this assertion because the writeback event
    queue is different from the CPU's event queue which can cause
    this assertion to fail.
sim/process.cc:
    Fix comment.
sim/system.hh:
    Struct member to hold the boot CPU's frequency.
sim/universe.cc:
    remove unneeded variable.

--HG--
extra : convert_revision : 51efe4041095234bf458d9b3b0d417f4cae16fdc
2005-04-11 15:32:06 -04:00

917 lines
24 KiB
C++

/*
* Copyright (c) 2002-2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <list>
#include <sstream>
#include <string>
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/trace.hh"
#include "base/stats/events.hh"
#include "cpu/base_cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/full_cpu/smt.hh"
#include "cpu/sampling_cpu/sampling_cpu.hh"
#include "cpu/simple_cpu/simple_cpu.hh"
#include "cpu/static_inst.hh"
#include "mem/base_mem.hh"
#include "mem/mem_interface.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#ifdef FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "dev/alpha_access.h"
#include "dev/pciareg.h"
#include "mem/functional_mem/memory_control.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "sim/system.hh"
#include "targetarch/alpha_memory.hh"
#include "targetarch/vtophys.hh"
#else // !FULL_SYSTEM
#include "eio/eio.hh"
#include "mem/functional_mem/functional_memory.hh"
#endif // FULL_SYSTEM
using namespace std;
SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
{
}
void
SimpleCPU::TickEvent::process()
{
int count = width;
do {
cpu->tick();
} while (--count > 0 && cpu->status() == Running);
}
const char *
SimpleCPU::TickEvent::description()
{
return "SimpleCPU tick event";
}
SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
: Event(&mainEventQueue), cpu(_cpu)
{
}
void SimpleCPU::CacheCompletionEvent::process()
{
cpu->processCacheCompletion();
}
const char *
SimpleCPU::CacheCompletionEvent::description()
{
return "SimpleCPU cache completion event";
}
SimpleCPU::SimpleCPU(Params *p)
: BaseCPU(p), tickEvent(this, p->width), xc(NULL),
cacheCompletionEvent(this)
{
_status = Idle;
#ifdef FULL_SYSTEM
xc = new ExecContext(this, 0, p->system, p->itb, p->dtb, p->mem);
// initialize CPU, including PC
TheISA::initCPU(&xc->regs);
#else
xc = new ExecContext(this, /* thread_num */ 0, p->process, /* asid */ 0);
#endif // !FULL_SYSTEM
icacheInterface = p->icache_interface;
dcacheInterface = p->dcache_interface;
memReq = new MemReq();
memReq->xc = xc;
memReq->asid = 0;
memReq->data = new uint8_t[64];
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
execContexts.push_back(xc);
}
SimpleCPU::~SimpleCPU()
{
}
void
SimpleCPU::switchOut(SamplingCPU *s)
{
sampler = s;
if (status() == DcacheMissStall) {
DPRINTF(Sampler,"Outstanding dcache access, waiting for completion\n");
_status = DcacheMissSwitch;
}
else {
_status = SwitchedOut;
if (tickEvent.scheduled())
tickEvent.squash();
sampler->signalSwitched();
}
}
void
SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
assert(!tickEvent.scheduled());
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
}
}
}
void
SimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(xc);
assert(_status == Idle);
notIdleFraction++;
scheduleTickEvent(delay);
_status = Running;
}
void
SimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(xc);
assert(_status == Running);
notIdleFraction--;
unscheduleTickEvent();
_status = Idle;
}
void
SimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
SimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
SimpleCPU::resetStats()
{
startNumInst = numInst;
notIdleFraction = (_status != Idle);
}
void
SimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
SERIALIZE_ENUM(_status);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
xc->serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
cacheCompletionEvent.serialize(os);
}
void
SimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
UNSERIALIZE_SCALAR(inst);
xc->unserialize(cp, csprintf("%s.xc", section));
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
cacheCompletionEvent
.unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
SimpleCPU::copySrcTranslate(Addr src)
{
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = xc->translateDataReadReq(memReq);
assert(fault != Alignment_Fault);
if (fault == No_Fault) {
xc->copySrcAddr = src;
xc->copySrcPhysAddr = memReq->paddr + offset;
} else {
xc->copySrcAddr = 0;
xc->copySrcPhysAddr = 0;
}
return fault;
}
Fault
SimpleCPU::copy(Addr dest)
{
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(xc->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = xc->translateDataWriteReq(memReq);
assert(fault != Alignment_Fault);
if (fault == No_Fault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = xc->copySrcPhysAddr;
xc->mem->read(memReq, data);
memReq->paddr = dest_addr;
xc->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = xc->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
dcacheInterface->access(memReq);
}
}
return fault;
}
// precise architected memory state accessor macros
template <class T>
Fault
SimpleCPU::read(Addr addr, T &data, unsigned flags)
{
if (status() == DcacheMissStall || status() == DcacheMissSwitch) {
Fault fault = xc->read(memReq,data);
if (traceData) {
traceData->setAddr(addr);
}
return fault;
}
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = xc->translateDataReadReq(memReq);
// if we have a cache, do cache access too
if (fault == No_Fault && dcacheInterface) {
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
} else {
// do functional access
fault = xc->read(memReq, data);
}
} else if(fault == No_Fault) {
// do functional access
fault = xc->read(memReq, data);
}
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = xc->translateDataWriteReq(memReq);
// do functional access
if (fault == No_Fault)
fault = xc->write(memReq, data);
if (fault == No_Fault && dcacheInterface) {
memReq->cmd = Write;
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
unscheduleTickEvent();
_status = DcacheMissStall;
}
}
if (res && (fault == No_Fault))
*res = memReq->result;
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Write");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#ifdef FULL_SYSTEM
Addr
SimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xc, addr);
}
#endif // FULL_SYSTEM
Tick save_cycle = 0;
void
SimpleCPU::processCacheCompletion()
{
switch (status()) {
case IcacheMissStall:
icacheStallCycles += curTick - lastIcacheStall;
_status = IcacheMissComplete;
scheduleTickEvent(1);
break;
case DcacheMissStall:
if (memReq->cmd.isRead()) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
dcacheStallCycles += curTick - lastDcacheStall;
_status = Running;
scheduleTickEvent(1);
break;
case DcacheMissSwitch:
if (memReq->cmd.isRead()) {
curStaticInst->execute(this,traceData);
if (traceData)
traceData->finalize();
}
_status = SwitchedOut;
sampler->signalSwitched();
case SwitchedOut:
// If this CPU has been switched out due to sampling/warm-up,
// ignore any further status changes (e.g., due to cache
// misses outstanding at the time of the switch).
return;
default:
panic("SimpleCPU::processCacheCompletion: bad state");
break;
}
}
#ifdef FULL_SYSTEM
void
SimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (xc->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
xc->activate();
}
}
#endif // FULL_SYSTEM
/* start simulation, program loaded, processor precise state initialized */
void
SimpleCPU::tick()
{
numCycles++;
traceData = NULL;
Fault fault = No_Fault;
#ifdef FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !xc->inPalMode() &&
status() != IcacheMissComplete) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
IntReg *ipr = xc->regs.ipr;
if (xc->regs.ipr[TheISA::IPR_SIRR]) {
for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = xc->cpu->intr_status();
for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (ipr[TheISA::IPR_ASTRR])
panic("asynchronous traps not implemented\n");
if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
ipr[TheISA::IPR_ISR] = summary;
ipr[TheISA::IPR_INTID] = ipl;
xc->ev5_trap(Interrupt_Fault);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
ipr[TheISA::IPR_IPLR], ipl, summary);
}
}
#endif
// maintain $r0 semantics
xc->regs.intRegFile[ZeroReg] = 0;
#ifdef TARGET_ALPHA
xc->regs.floatRegFile.d[ZeroReg] = 0.0;
#endif // TARGET_ALPHA
if (status() == IcacheMissComplete) {
// We've already fetched an instruction and were stalled on an
// I-cache miss. No need to fetch it again.
// Set status to running; tick event will get rescheduled if
// necessary at end of tick() function.
_status = Running;
}
else {
// Try to fetch an instruction
// set up memory request for instruction fetch
#ifdef FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
memReq->cmd = Read;
memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
IFETCH_FLAGS(xc->regs.pc));
fault = xc->translateInstReq(memReq);
if (fault == No_Fault)
fault = xc->mem->read(memReq, inst);
if (icacheInterface && fault == No_Fault) {
memReq->completionEvent = NULL;
memReq->time = curTick;
MemAccessResult result = icacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && icacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastIcacheStall = curTick;
unscheduleTickEvent();
_status = IcacheMissStall;
return;
}
}
}
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
if (fault == No_Fault) {
// keep an instruction count
numInst++;
numInsts++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = htoa(inst);
curStaticInst = StaticInst<TheISA>::decode(inst);
traceData = Trace::getInstRecord(curTick, xc, this, curStaticInst,
xc->regs.pc);
#ifdef FULL_SYSTEM
xc->setInst(inst);
#endif // FULL_SYSTEM
xc->func_exe_inst++;
fault = curStaticInst->execute(this, traceData);
#ifdef FULL_SYSTEM
if (xc->fnbin)
xc->execute(curStaticInst.get());
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
// If we have a dcache miss, then we can't finialize the instruction
// trace yet because we want to populate it with the data later
if (traceData &&
!(status() == DcacheMissStall && memReq->cmd.isRead())) {
traceData->finalize();
}
traceFunctions(xc->regs.pc);
} // if (fault == No_Fault)
if (fault != No_Fault) {
#ifdef FULL_SYSTEM
xc->ev5_trap(fault);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
#endif // FULL_SYSTEM
}
else {
// go to the next instruction
xc->regs.pc = xc->regs.npc;
xc->regs.npc += sizeof(MachInst);
}
#ifdef FULL_SYSTEM
Addr oldpc;
do {
oldpc = xc->regs.pc;
system->pcEventQueue.service(xc);
} while (oldpc != xc->regs.pc);
#endif
assert(status() == Running ||
status() == Idle ||
status() == DcacheMissStall);
if (status() == Running && !tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(1));
}
////////////////////////////////////////////////////////////////////////
//
// SimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
#ifdef FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<FunctionalMemory *> mem;
SimObjectParam<System *> system;
Param<int> mult;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> cycle_time;
SimObjectParam<BaseMem *> icache;
SimObjectParam<BaseMem *> dcache;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
#ifdef FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(mem, "memory"),
INIT_PARAM(system, "system object"),
INIT_PARAM(mult, "system clock multiplier"),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(cycle_time, "cpu cycle time"),
INIT_PARAM(icache, "L1 instruction cache object"),
INIT_PARAM(dcache, "L1 data cache object"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
CREATE_SIM_OBJECT(SimpleCPU)
{
#ifdef FULL_SYSTEM
if (mult != 1)
panic("processor clock multiplier must be 1\n");
#endif
SimpleCPU::Params *params = new SimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->cycleTime = cycle_time;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->icache_interface = (icache) ? icache->getInterface() : NULL;
params->dcache_interface = (dcache) ? dcache->getInterface() : NULL;
params->width = width;
#ifdef FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->mem = mem;
params->system = system;
#else
params->process = workload;
#endif
SimpleCPU *cpu = new SimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)