gem5/src/cpu/static_inst.hh
Gabe Black a2b56088fb Make the predecoder an object with it's own switched header file. Start adding predecoding functionality to x86.
src/arch/SConscript:
src/arch/alpha/utility.hh:
src/arch/mips/utility.hh:
src/arch/sparc/utility.hh:
src/cpu/base.hh:
src/cpu/o3/fetch.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/simple/atomic.cc:
src/cpu/simple/base.cc:
src/cpu/simple/base.hh:
src/cpu/static_inst.hh:
src/arch/alpha/predecoder.hh:
src/arch/mips/predecoder.hh:
src/arch/sparc/predecoder.hh:
    Make the predecoder an object with it's own switched header file.

--HG--
extra : convert_revision : 77206e29089130e86b97164c30022a062699ba86
2007-03-15 02:47:42 +00:00

512 lines
18 KiB
C++

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#ifndef __CPU_STATIC_INST_HH__
#define __CPU_STATIC_INST_HH__
#include <bitset>
#include <string>
#include "arch/isa_traits.hh"
#include "arch/utility.hh"
#include "sim/faults.hh"
#include "base/bitfield.hh"
#include "base/hashmap.hh"
#include "base/misc.hh"
#include "base/refcnt.hh"
#include "cpu/op_class.hh"
#include "cpu/o3/dyn_inst.hh"
#include "sim/faults.hh"
#include "sim/host.hh"
// forward declarations
struct AlphaSimpleImpl;
struct OzoneImpl;
struct SimpleImpl;
class ThreadContext;
class DynInst;
class Packet;
template <class Impl>
class OzoneDynInst;
class CheckerCPU;
class FastCPU;
class AtomicSimpleCPU;
class TimingSimpleCPU;
class InorderCPU;
class SymbolTable;
namespace Trace {
class InstRecord;
}
typedef uint32_t MicroPC;
/**
* Base, ISA-independent static instruction class.
*
* The main component of this class is the vector of flags and the
* associated methods for reading them. Any object that can rely
* solely on these flags can process instructions without being
* recompiled for multiple ISAs.
*/
class StaticInstBase : public RefCounted
{
protected:
/// Set of boolean static instruction properties.
///
/// Notes:
/// - The IsInteger and IsFloating flags are based on the class of
/// registers accessed by the instruction. Although most
/// instructions will have exactly one of these two flags set, it
/// is possible for an instruction to have neither (e.g., direct
/// unconditional branches, memory barriers) or both (e.g., an
/// FP/int conversion).
/// - If IsMemRef is set, then exactly one of IsLoad or IsStore
/// will be set.
/// - If IsControl is set, then exactly one of IsDirectControl or
/// IsIndirect Control will be set, and exactly one of
/// IsCondControl or IsUncondControl will be set.
/// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
/// implemented as flags since in the current model there's no
/// other way for instructions to inject behavior into the
/// pipeline outside of fetch. Once we go to an exec-in-exec CPU
/// model we should be able to get rid of these flags and
/// implement this behavior via the execute() methods.
///
enum Flags {
IsNop, ///< Is a no-op (no effect at all).
IsInteger, ///< References integer regs.
IsFloating, ///< References FP regs.
IsMemRef, ///< References memory (load, store, or prefetch).
IsLoad, ///< Reads from memory (load or prefetch).
IsStore, ///< Writes to memory.
IsStoreConditional, ///< Store conditional instruction.
IsInstPrefetch, ///< Instruction-cache prefetch.
IsDataPrefetch, ///< Data-cache prefetch.
IsCopy, ///< Fast Cache block copy
IsControl, ///< Control transfer instruction.
IsDirectControl, ///< PC relative control transfer.
IsIndirectControl, ///< Register indirect control transfer.
IsCondControl, ///< Conditional control transfer.
IsUncondControl, ///< Unconditional control transfer.
IsCall, ///< Subroutine call.
IsReturn, ///< Subroutine return.
IsCondDelaySlot,///< Conditional Delay-Slot Instruction
IsThreadSync, ///< Thread synchronization operation.
IsSerializing, ///< Serializes pipeline: won't execute until all
/// older instructions have committed.
IsSerializeBefore,
IsSerializeAfter,
IsMemBarrier, ///< Is a memory barrier
IsWriteBarrier, ///< Is a write barrier
IsNonSpeculative, ///< Should not be executed speculatively
IsQuiesce, ///< Is a quiesce instruction
IsIprAccess, ///< Accesses IPRs
IsUnverifiable, ///< Can't be verified by a checker
//Flags for microcode
IsMacroOp, ///< Is a macroop containing microops
IsMicroOp, ///< Is a microop
IsDelayedCommit, ///< This microop doesn't commit right away
IsLastMicroOp, ///< This microop ends a microop sequence
IsFirstMicroOp, ///< This microop begins a microop sequence
//This flag doesn't do anything yet
IsMicroBranch, ///< This microop branches within the microcode for a macroop
NumFlags
};
/// Flag values for this instruction.
std::bitset<NumFlags> flags;
/// See opClass().
OpClass _opClass;
/// See numSrcRegs().
int8_t _numSrcRegs;
/// See numDestRegs().
int8_t _numDestRegs;
/// The following are used to track physical register usage
/// for machines with separate int & FP reg files.
//@{
int8_t _numFPDestRegs;
int8_t _numIntDestRegs;
//@}
/// Constructor.
/// It's important to initialize everything here to a sane
/// default, since the decoder generally only overrides
/// the fields that are meaningful for the particular
/// instruction.
StaticInstBase(OpClass __opClass)
: _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
_numFPDestRegs(0), _numIntDestRegs(0)
{
}
public:
/// @name Register information.
/// The sum of numFPDestRegs() and numIntDestRegs() equals
/// numDestRegs(). The former two functions are used to track
/// physical register usage for machines with separate int & FP
/// reg files.
//@{
/// Number of source registers.
int8_t numSrcRegs() const { return _numSrcRegs; }
/// Number of destination registers.
int8_t numDestRegs() const { return _numDestRegs; }
/// Number of floating-point destination regs.
int8_t numFPDestRegs() const { return _numFPDestRegs; }
/// Number of integer destination regs.
int8_t numIntDestRegs() const { return _numIntDestRegs; }
//@}
/// @name Flag accessors.
/// These functions are used to access the values of the various
/// instruction property flags. See StaticInstBase::Flags for descriptions
/// of the individual flags.
//@{
bool isNop() const { return flags[IsNop]; }
bool isMemRef() const { return flags[IsMemRef]; }
bool isLoad() const { return flags[IsLoad]; }
bool isStore() const { return flags[IsStore]; }
bool isStoreConditional() const { return flags[IsStoreConditional]; }
bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
bool isCopy() const { return flags[IsCopy];}
bool isInteger() const { return flags[IsInteger]; }
bool isFloating() const { return flags[IsFloating]; }
bool isControl() const { return flags[IsControl]; }
bool isCall() const { return flags[IsCall]; }
bool isReturn() const { return flags[IsReturn]; }
bool isDirectCtrl() const { return flags[IsDirectControl]; }
bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
bool isCondCtrl() const { return flags[IsCondControl]; }
bool isUncondCtrl() const { return flags[IsUncondControl]; }
bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
bool isThreadSync() const { return flags[IsThreadSync]; }
bool isSerializing() const { return flags[IsSerializing] ||
flags[IsSerializeBefore] ||
flags[IsSerializeAfter]; }
bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
bool isMemBarrier() const { return flags[IsMemBarrier]; }
bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
bool isQuiesce() const { return flags[IsQuiesce]; }
bool isIprAccess() const { return flags[IsIprAccess]; }
bool isUnverifiable() const { return flags[IsUnverifiable]; }
bool isMacroOp() const { return flags[IsMacroOp]; }
bool isMicroOp() const { return flags[IsMicroOp]; }
bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
bool isLastMicroOp() const { return flags[IsLastMicroOp]; }
bool isFirstMicroOp() const { return flags[IsFirstMicroOp]; }
//This flag doesn't do anything yet
bool isMicroBranch() const { return flags[IsMicroBranch]; }
//@}
/// Operation class. Used to select appropriate function unit in issue.
OpClass opClass() const { return _opClass; }
};
// forward declaration
class StaticInstPtr;
/**
* Generic yet ISA-dependent static instruction class.
*
* This class builds on StaticInstBase, defining fields and interfaces
* that are generic across all ISAs but that differ in details
* according to the specific ISA being used.
*/
class StaticInst : public StaticInstBase
{
public:
/// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
/// Binary extended machine instruction type.
typedef TheISA::ExtMachInst ExtMachInst;
/// Logical register index type.
typedef TheISA::RegIndex RegIndex;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
};
/// Return logical index (architectural reg num) of i'th destination reg.
/// Only the entries from 0 through numDestRegs()-1 are valid.
RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
/// Return logical index (architectural reg num) of i'th source reg.
/// Only the entries from 0 through numSrcRegs()-1 are valid.
RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
/// Pointer to a statically allocated "null" instruction object.
/// Used to give eaCompInst() and memAccInst() something to return
/// when called on non-memory instructions.
static StaticInstPtr nullStaticInstPtr;
/**
* Memory references only: returns "fake" instruction representing
* the effective address part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the EA computation.
*/
virtual const
StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
/**
* Memory references only: returns "fake" instruction representing
* the memory access part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the memory access (not the EA computation).
*/
virtual const
StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
/// The binary machine instruction.
const ExtMachInst machInst;
protected:
/// See destRegIdx().
RegIndex _destRegIdx[MaxInstDestRegs];
/// See srcRegIdx().
RegIndex _srcRegIdx[MaxInstSrcRegs];
/**
* Base mnemonic (e.g., "add"). Used by generateDisassembly()
* methods. Also useful to readily identify instructions from
* within the debugger when #cachedDisassembly has not been
* initialized.
*/
const char *mnemonic;
/**
* String representation of disassembly (lazily evaluated via
* disassemble()).
*/
mutable std::string *cachedDisassembly;
/**
* Internal function to generate disassembly string.
*/
virtual std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
/// Constructor.
StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
: StaticInstBase(__opClass),
machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
{
}
public:
virtual ~StaticInst()
{
if (cachedDisassembly)
delete cachedDisassembly;
}
/**
* The execute() signatures are auto-generated by scons based on the
* set of CPU models we are compiling in today.
*/
#include "cpu/static_inst_exec_sigs.hh"
/**
* Return the microop that goes with a particular micropc. This should
* only be defined/used in macroops which will contain microops
*/
virtual StaticInstPtr fetchMicroOp(MicroPC micropc);
/**
* Return the target address for a PC-relative branch.
* Invalid if not a PC-relative branch (i.e. isDirectCtrl()
* should be true).
*/
virtual Addr branchTarget(Addr branchPC) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not a PC-relative branch.");
M5_DUMMY_RETURN
}
/**
* Return the target address for an indirect branch (jump). The
* register value is read from the supplied thread context, so
* the result is valid only if the thread context is about to
* execute the branch in question. Invalid if not an indirect
* branch (i.e. isIndirectCtrl() should be true).
*/
virtual Addr branchTarget(ThreadContext *tc) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not an indirect branch.");
}
M5_DUMMY_RETURN
/**
* Return true if the instruction is a control transfer, and if so,
* return the target address as well.
*/
bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
/**
* Return string representation of disassembled instruction.
* The default version of this function will call the internal
* virtual generateDisassembly() function to get the string,
* then cache it in #cachedDisassembly. If the disassembly
* should not be cached, this function should be overridden directly.
*/
virtual const std::string &disassemble(Addr pc,
const SymbolTable *symtab = 0) const
{
if (!cachedDisassembly)
cachedDisassembly =
new std::string(generateDisassembly(pc, symtab));
return *cachedDisassembly;
}
/// Decoded instruction cache type.
/// For now we're using a generic hash_map; this seems to work
/// pretty well.
typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
/// A cache of decoded instruction objects.
static DecodeCache decodeCache;
/**
* Dump some basic stats on the decode cache hash map.
* Only gets called if DECODE_CACHE_HASH_STATS is defined.
*/
static void dumpDecodeCacheStats();
/// Decode a machine instruction.
/// @param mach_inst The binary instruction to decode.
/// @retval A pointer to the corresponding StaticInst object.
//This is defined as inline below.
static StaticInstPtr decode(ExtMachInst mach_inst);
/// Return name of machine instruction
std::string getName() { return mnemonic; }
};
typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
/// Reference-counted pointer to a StaticInst object.
/// This type should be used instead of "StaticInst *" so that
/// StaticInst objects can be properly reference-counted.
class StaticInstPtr : public RefCountingPtr<StaticInst>
{
public:
/// Constructor.
StaticInstPtr()
: RefCountingPtr<StaticInst>()
{
}
/// Conversion from "StaticInst *".
StaticInstPtr(StaticInst *p)
: RefCountingPtr<StaticInst>(p)
{
}
/// Copy constructor.
StaticInstPtr(const StaticInstPtr &r)
: RefCountingPtr<StaticInst>(r)
{
}
/// Construct directly from machine instruction.
/// Calls StaticInst::decode().
explicit StaticInstPtr(TheISA::ExtMachInst mach_inst)
: RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
{
}
/// Convert to pointer to StaticInstBase class.
operator const StaticInstBasePtr()
{
return this->get();
}
};
inline StaticInstPtr
StaticInst::decode(StaticInst::ExtMachInst mach_inst)
{
#ifdef DECODE_CACHE_HASH_STATS
// Simple stats on decode hash_map. Turns out the default
// hash function is as good as anything I could come up with.
const int dump_every_n = 10000000;
static int decodes_til_dump = dump_every_n;
if (--decodes_til_dump == 0) {
dumpDecodeCacheStats();
decodes_til_dump = dump_every_n;
}
#endif
DecodeCache::iterator iter = decodeCache.find(mach_inst);
if (iter != decodeCache.end()) {
return iter->second;
}
StaticInstPtr si = TheISA::decodeInst(mach_inst);
decodeCache[mach_inst] = si;
return si;
}
#endif // __CPU_STATIC_INST_HH__