gem5/arch/alpha/ev5.cc
Kevin Lim 34da58a698 Merge ktlim@zizzer:/bk/m5
into  zamp.eecs.umich.edu:/z/ktlim2/clean/m5-clean

arch/alpha/ev5.cc:
cpu/o3/regfile.hh:
    Hand merge.

--HG--
rename : arch/alpha/alpha_memory.cc => arch/alpha/tlb.cc
extra : convert_revision : c941dd2198851398820b38a66471372ed8454891
2006-02-28 15:16:24 -05:00

658 lines
18 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/alpha/tlb.hh"
#include "arch/alpha/isa_traits.hh"
#include "arch/alpha/osfpal.hh"
#include "base/kgdb.h"
#include "base/remote_gdb.hh"
#include "base/stats/events.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/fast/cpu.hh"
#include "kern/kernel_stats.hh"
#include "sim/debug.hh"
#include "sim/sim_events.hh"
#if FULL_SYSTEM
using namespace EV5;
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow)
{
if (regs->pal_shadow == use_shadow)
panic("swap_palshadow: wrong PAL shadow state");
regs->pal_shadow = use_shadow;
for (int i = 0; i < NumIntRegs; i++) {
if (reg_redir[i]) {
IntReg temp = regs->intRegFile[i];
regs->intRegFile[i] = regs->palregs[i];
regs->palregs[i] = temp;
}
}
}
////////////////////////////////////////////////////////////////////////
//
// Machine dependent functions
//
void
AlphaISA::initCPU(RegFile *regs, int cpuId)
{
initIPRs(&regs->miscRegs, cpuId);
// CPU comes up with PAL regs enabled
swap_palshadow(regs, true);
regs->intRegFile[16] = cpuId;
regs->intRegFile[0] = cpuId;
regs->pc = regs->miscRegs.readReg(IPR_PAL_BASE) + (new ResetFault)->vect();
regs->npc = regs->pc + sizeof(MachInst);
}
const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = {
/* 0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 8 */ 1, 1, 1, 1, 1, 1, 1, 0,
/* 16 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 };
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::initIPRs(MiscRegFile *miscRegs, int cpuId)
{
miscRegs->clearIprs();
miscRegs->setReg(IPR_PAL_BASE, PalBase);
miscRegs->setReg(IPR_MCSR, 0x6);
miscRegs->setReg(IPR_PALtemp16, cpuId);
}
template <class CPU>
void
AlphaISA::processInterrupts(CPU *cpu)
{
//Check if there are any outstanding interrupts
//Handle the interrupts
int ipl = 0;
int summary = 0;
cpu->checkInterrupts = false;
if (cpu->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (cpu->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (cpu->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpu->intr_status();
if (interrupts) {
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
}
if (ipl && ipl > cpu->readMiscReg(IPR_IPLR)) {
cpu->setMiscReg(IPR_ISR, summary);
cpu->setMiscReg(IPR_INTID, ipl);
cpu->trap(new InterruptFault);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
cpu->readMiscReg(IPR_IPLR), ipl, summary);
}
}
template <class CPU>
void
AlphaISA::zeroRegisters(CPU *cpu)
{
// Insure ISA semantics
// (no longer very clean due to the change in setIntReg() in the
// cpu model. Consider changing later.)
cpu->xc->setIntReg(ZeroReg, 0);
cpu->xc->setFloatRegDouble(ZeroReg, 0.0);
}
void
ExecContext::ev5_temp_trap(Fault fault)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", fault->name(), regs.pc);
cpu->recordEvent(csprintf("Fault %s", fault->name()));
assert(!misspeculating());
kernelStats->fault(fault);
if (fault->isA<ArithmeticFault>())
panic("Arithmetic traps are unimplemented!");
// exception restart address
if (!fault->isA<InterruptFault>() || !inPalMode())
setMiscReg(AlphaISA::IPR_EXC_ADDR, regs.pc);
if (fault->isA<PalFault>() || fault->isA<ArithmeticFault>() /* ||
fault == InterruptFault && !inPalMode() */) {
// traps... skip faulting instruction.
setMiscReg(AlphaISA::IPR_EXC_ADDR,
readMiscReg(AlphaISA::IPR_EXC_ADDR) + 4);
}
if (!inPalMode())
AlphaISA::swap_palshadow(&regs, true);
regs.pc = readMiscReg(AlphaISA::IPR_PAL_BASE) +
(dynamic_cast<AlphaFault *>(fault.get()))->vect();
regs.npc = regs.pc + sizeof(MachInst);
}
void
AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc)
{
bool use_pc = (fault == NoFault);
if (fault->isA<ArithmeticFault>())
panic("arithmetic faults NYI...");
// compute exception restart address
if (use_pc || fault->isA<PalFault>() || fault->isA<ArithmeticFault>()) {
// traps... skip faulting instruction
regs->miscRegs.setReg(IPR_EXC_ADDR, regs->pc + 4);
} else {
// fault, post fault at excepting instruction
regs->miscRegs.setReg(IPR_EXC_ADDR, regs->pc);
}
// jump to expection address (PAL PC bit set here as well...)
if (!use_pc)
regs->npc = regs->miscRegs.readReg(IPR_PAL_BASE) +
(dynamic_cast<AlphaFault *>(fault.get()))->vect();
else
regs->npc = regs->miscRegs.readReg(IPR_PAL_BASE) + pc;
// that's it! (orders of magnitude less painful than x86)
}
Fault
ExecContext::hwrei()
{
if (!inPalMode())
return new UnimplementedOpcodeFault;
setNextPC(readMiscReg(AlphaISA::IPR_EXC_ADDR));
if (!misspeculating()) {
kernelStats->hwrei();
if ((readMiscReg(AlphaISA::IPR_EXC_ADDR) & 1) == 0)
AlphaISA::swap_palshadow(&regs, false);
cpu->checkInterrupts = true;
}
// FIXME: XXX check for interrupts? XXX
return NoFault;
}
void
AlphaISA::MiscRegFile::clearIprs()
{
bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg));
}
AlphaISA::MiscReg
AlphaISA::MiscRegFile::readIpr(int idx, Fault &fault, ExecContext *xc)
{
uint64_t retval = 0; // return value, default 0
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PALtemp23:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
case AlphaISA::IPR_ISR:
case AlphaISA::IPR_EXC_ADDR:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_MCSR:
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
case AlphaISA::IPR_SIRR:
case AlphaISA::IPR_ICSR:
case AlphaISA::IPR_ICM:
case AlphaISA::IPR_DTB_CM:
case AlphaISA::IPR_IPLR:
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_PMCTR:
// no side-effect
retval = ipr[idx];
break;
case AlphaISA::IPR_CC:
retval |= ipr[idx] & ULL(0xffffffff00000000);
retval |= xc->cpu->curCycle() & ULL(0x00000000ffffffff);
break;
case AlphaISA::IPR_VA:
retval = ipr[idx];
break;
case AlphaISA::IPR_VA_FORM:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_IFAULT_VA_FORM:
case AlphaISA::IPR_EXC_MASK:
case AlphaISA::IPR_EXC_SUM:
retval = ipr[idx];
break;
case AlphaISA::IPR_DTB_PTE:
{
AlphaISA::PTE &pte = xc->dtb->index(!xc->misspeculating());
retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
}
break;
// write only registers
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
case AlphaISA::IPR_ALT_MODE:
case AlphaISA::IPR_DTB_IA:
case AlphaISA::IPR_DTB_IAP:
case AlphaISA::IPR_ITB_IA:
case AlphaISA::IPR_ITB_IAP:
fault = new UnimplementedOpcodeFault;
break;
default:
// invalid IPR
fault = new UnimplementedOpcodeFault;
break;
}
return retval;
}
#ifdef DEBUG
// Cause the simulator to break when changing to the following IPL
int break_ipl = -1;
#endif
Fault
AlphaISA::MiscRegFile::setIpr(int idx, uint64_t val, ExecContext *xc)
{
uint64_t old;
if (xc->misspeculating())
return NoFault;
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_PMCTR:
// write entire quad w/ no side-effect
ipr[idx] = val;
break;
case AlphaISA::IPR_CC_CTL:
// This IPR resets the cycle counter. We assume this only
// happens once... let's verify that.
assert(ipr[idx] == 0);
ipr[idx] = 1;
break;
case AlphaISA::IPR_CC:
// This IPR only writes the upper 64 bits. It's ok to write
// all 64 here since we mask out the lower 32 in rpcc (see
// isa_desc).
ipr[idx] = val;
break;
case AlphaISA::IPR_PALtemp23:
// write entire quad w/ no side-effect
old = ipr[idx];
ipr[idx] = val;
xc->kernelStats->context(old, val);
break;
case AlphaISA::IPR_DTB_PTE:
// write entire quad w/ no side-effect, tag is forthcoming
ipr[idx] = val;
break;
case AlphaISA::IPR_EXC_ADDR:
// second least significant bit in PC is always zero
ipr[idx] = val & ~2;
break;
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
// only write least significant four bits - privilege mask
ipr[idx] = val & 0xf;
break;
case AlphaISA::IPR_IPLR:
#ifdef DEBUG
if (break_ipl != -1 && break_ipl == (val & 0x1f))
debug_break();
#endif
// only write least significant five bits - interrupt level
ipr[idx] = val & 0x1f;
xc->kernelStats->swpipl(ipr[idx]);
break;
case AlphaISA::IPR_DTB_CM:
if (val & 0x18)
xc->kernelStats->mode(Kernel::user);
else
xc->kernelStats->mode(Kernel::kernel);
case AlphaISA::IPR_ICM:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_ALT_MODE:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_MCSR:
// more here after optimization...
ipr[idx] = val;
break;
case AlphaISA::IPR_SIRR:
// only write software interrupt mask
ipr[idx] = val & 0x7fff0;
break;
case AlphaISA::IPR_ICSR:
ipr[idx] = val & ULL(0xffffff0300);
break;
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_MVPTBR:
ipr[idx] = val & ULL(0xffffffffc0000000);
break;
case AlphaISA::IPR_DC_TEST_CTL:
ipr[idx] = val & 0x1ffb;
break;
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
ipr[idx] = val & 0x3f;
break;
case AlphaISA::IPR_ITB_ASN:
ipr[idx] = val & 0x7f0;
break;
case AlphaISA::IPR_DTB_ASN:
ipr[idx] = val & ULL(0xfe00000000000000);
break;
case AlphaISA::IPR_EXC_SUM:
case AlphaISA::IPR_EXC_MASK:
// any write to this register clears it
ipr[idx] = 0;
break;
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_SL_RCV:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_ITB_PTE_TEMP:
case AlphaISA::IPR_DTB_PTE_TEMP:
// read-only registers
return new UnimplementedOpcodeFault;
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
// the following are write only
ipr[idx] = val;
break;
case AlphaISA::IPR_DTB_IA:
// really a control write
ipr[idx] = 0;
xc->dtb->flushAll();
break;
case AlphaISA::IPR_DTB_IAP:
// really a control write
ipr[idx] = 0;
xc->dtb->flushProcesses();
break;
case AlphaISA::IPR_DTB_IS:
// really a control write
ipr[idx] = val;
xc->dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
break;
case AlphaISA::IPR_DTB_TAG: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);
// insert new TAG/PTE value into data TLB
xc->dtb->insert(val, pte);
}
break;
case AlphaISA::IPR_ITB_PTE: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (ITB_PTE_GH(val) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = ITB_PTE_PPN(val);
pte.xre = ITB_PTE_XRE(val);
pte.xwe = 0;
pte.fonr = ITB_PTE_FONR(val);
pte.fonw = ITB_PTE_FONW(val);
pte.asma = ITB_PTE_ASMA(val);
pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);
// insert new TAG/PTE value into data TLB
xc->itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
}
break;
case AlphaISA::IPR_ITB_IA:
// really a control write
ipr[idx] = 0;
xc->itb->flushAll();
break;
case AlphaISA::IPR_ITB_IAP:
// really a control write
ipr[idx] = 0;
xc->itb->flushProcesses();
break;
case AlphaISA::IPR_ITB_IS:
// really a control write
ipr[idx] = val;
xc->itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
break;
default:
// invalid IPR
return new UnimplementedOpcodeFault;
}
// no error...
return NoFault;
}
/**
* Check for special simulator handling of specific PAL calls.
* If return value is false, actual PAL call will be suppressed.
*/
bool
ExecContext::simPalCheck(int palFunc)
{
kernelStats->callpal(palFunc);
switch (palFunc) {
case PAL::halt:
halt();
if (--System::numSystemsRunning == 0)
new SimExitEvent("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (system->breakpoint())
return false;
break;
}
return true;
}
//Forward instantiation for FastCPU object
template
void AlphaISA::processInterrupts(FastCPU *xc);
//Forward instantiation for FastCPU object
template
void AlphaISA::zeroRegisters(FastCPU *xc);
#endif // FULL_SYSTEM