gem5/cpu/ozone/cpu.hh
Gabe Black 10c79efe55 Changed the fault enum into a class, and fixed everything up to work with it. Next, the faults need to be pulled out of all the other code so that they are only used to communicate between the CPU and the ISA.
SConscript:
    The new faults.cc file in sim allocates the system wide faults. When these faults are generated through a function interface in the ISA, this file may go away.
arch/alpha/alpha_memory.cc:
    Changed Fault to Fault * and took the underscores out of fault names.
arch/alpha/alpha_memory.hh:
    Changed Fault to Fault *. Also, added an include for the alpha faults.
arch/alpha/ev5.cc:
    Changed the fault_addr array into a fault_addr function. Once all of the faults can be expected to have the same type, fault_addr can go away completely and the info it provided will come from the fault itself. Also, Fault was changed to Fault *, and underscores were taken out of fault names.
arch/alpha/isa/decoder.isa:
    Changed Fault to Fault * and took the underscores out fault names.
arch/alpha/isa/fp.isa:
    Changed Fault to Fault *, and took the underscores out of fault names.
arch/alpha/isa/main.isa:
    Changed Fault to Fault *, removed underscores from fault names, and made an include of the alpha faults show up in all the generated files.
arch/alpha/isa/mem.isa:
    Changed Fault to Fault * and removed underscores from fault names.
arch/alpha/isa/unimp.isa:
arch/alpha/isa/unknown.isa:
cpu/exec_context.hh:
cpu/ozone/cpu.hh:
cpu/simple/cpu.cc:
dev/alpha_console.cc:
dev/ide_ctrl.cc:
dev/isa_fake.cc:
dev/pciconfigall.cc:
dev/pcidev.cc:
dev/pcidev.hh:
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_pchip.cc:
    Changed Fault to Fault *, and removed underscores from fault names.
arch/alpha/isa_traits.hh:
    Changed the include of arch/alpha/faults.hh to sim/faults.hh, since the alpha faults weren't needed.
cpu/base_dyn_inst.cc:
    Changed Fault to Fault *, and removed underscores from fault names. This file probably shouldn't use the Unimplemented Opcode fault.
cpu/base_dyn_inst.hh:
    Changed Fault to Fault * and took the underscores out of the fault names.
cpu/exec_context.cc:
cpu/o3/alpha_dyn_inst.hh:
cpu/o3/alpha_dyn_inst_impl.hh:
cpu/o3/fetch.hh:
dev/alpha_console.hh:
dev/baddev.hh:
dev/ide_ctrl.hh:
dev/isa_fake.hh:
dev/ns_gige.hh:
dev/pciconfigall.hh:
dev/sinic.hh:
dev/tsunami_cchip.hh:
dev/tsunami_io.hh:
dev/tsunami_pchip.hh:
dev/uart.hh:
dev/uart8250.hh:
    Changed Fault to Fault *.
cpu/o3/alpha_cpu.hh:
    Changed Fault to Fault *, removed underscores from fault names.
cpu/o3/alpha_cpu_impl.hh:
    Changed Fault to Fault *, removed underscores from fault names, and changed the fault_addr array to the fault_addr function. Once all faults are from the ISA, this function will probably go away.
cpu/o3/commit_impl.hh:
cpu/o3/fetch_impl.hh:
dev/baddev.cc:
    Changed Fault to Fault *, and removed underscores from the fault names.
cpu/o3/regfile.hh:
    Added an include for the alpha specific faults which will hopefully go away once the ipr stuff is moved, changed Fault to Fault *, and removed the underscores from fault names.
cpu/simple/cpu.hh:
    Changed Fault to Fault *
dev/ns_gige.cc:
    Changed Fault to Fault *, and removdd underscores from fault names.
dev/sinic.cc:
    Changed Fault to Fault *, and removed the underscores from fault names.
dev/uart8250.cc:
    Chanted Fault to Fault *, and removed underscores from fault names.
kern/kernel_stats.cc:
    Removed underscores from fault names, and from NumFaults.
kern/kernel_stats.hh:
    Changed the predeclaration of Fault from an enum to a class, and changd the "fault" function to work with the classes instead of the enum. Once there are no system wide faults anymore, this code will simplify back to something like it was originally.
sim/faults.cc:
    This allocates the system wide faults.
sim/faults.hh:
    This declares the system wide faults.
sim/syscall_emul.cc:
sim/syscall_emul.hh:
    Removed the underscores from fault names.

--HG--
rename : arch/alpha/faults.cc => sim/faults.cc
rename : arch/alpha/faults.hh => sim/faults.hh
extra : convert_revision : 253d39258237333ae8ec4d8047367cb3ea68569d
2006-02-16 01:22:51 -05:00

628 lines
16 KiB
C++

/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OOO_CPU_OOO_CPU_HH__
#define __CPU_OOO_CPU_OOO_CPU_HH__
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "encumbered/cpu/full/fu_pool.hh"
#include "cpu/ooo_cpu/ea_list.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "mem/mem_interface.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
class Checkpoint;
class MemInterface;
namespace Trace {
class InstRecord;
}
/**
* Declaration of Out-of-Order CPU class. Basically it is a SimpleCPU with
* simple out-of-order capabilities added to it. It is still a 1 CPI machine
* (?), but is capable of handling cache misses. Basically it models having
* a ROB/IQ by only allowing a certain amount of instructions to execute while
* the cache miss is outstanding.
*/
template <class Impl>
class OoOCPU : public BaseCPU
{
private:
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::ISA ISA;
public:
// main simulation loop (one cycle)
void tick();
private:
struct TickEvent : public Event
{
OoOCPU *cpu;
int width;
TickEvent(OoOCPU *c, int w);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int delay)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + delay);
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + delay);
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
Trace::InstRecord *traceData;
template<typename T>
void trace_data(T data);
public:
//
enum Status {
Running,
Idle,
IcacheMiss,
IcacheMissComplete,
DcacheMissStall,
SwitchedOut
};
private:
Status _status;
public:
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
struct Params : public BaseCPU::Params
{
MemInterface *icache_interface;
MemInterface *dcache_interface;
int width;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
FunctionalMemory *mem;
#else
Process *process;
#endif
int issueWidth;
};
OoOCPU(Params *params);
virtual ~OoOCPU();
void init();
private:
void copyFromXC();
public:
// execution context
ExecContext *xc;
void switchOut();
void takeOverFrom(BaseCPU *oldCPU);
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// L1 instruction cache
MemInterface *icacheInterface;
// L1 data cache
MemInterface *dcacheInterface;
FuncUnitPool *fuPool;
// Refcounted pointer to the one memory request.
MemReqPtr cacheMemReq;
class ICacheCompletionEvent : public Event
{
private:
OoOCPU *cpu;
public:
ICacheCompletionEvent(OoOCPU *_cpu);
virtual void process();
virtual const char *description();
};
// Will need to create a cache completion event upon any memory miss.
ICacheCompletionEvent iCacheCompletionEvent;
class DCacheCompletionEvent;
typedef typename
std::list<DCacheCompletionEvent>::iterator DCacheCompEventIt;
class DCacheCompletionEvent : public Event
{
private:
OoOCPU *cpu;
DynInstPtr inst;
DCacheCompEventIt dcceIt;
public:
DCacheCompletionEvent(OoOCPU *_cpu, DynInstPtr &_inst,
DCacheCompEventIt &_dcceIt);
virtual void process();
virtual const char *description();
};
friend class DCacheCompletionEvent;
protected:
std::list<DCacheCompletionEvent> dCacheCompList;
DCacheCompEventIt dcceIt;
private:
Status status() const { return _status; }
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache misses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for D-cache misses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
void processICacheCompletion();
public:
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
int getInstAsid() { return xc->regs.instAsid(); }
int getDataAsid() { return xc->regs.dataAsid(); }
Fault * translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
Fault * translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
Fault * translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
bool validInstAddr(Addr addr)
{ return xc->validInstAddr(addr); }
bool validDataAddr(Addr addr)
{ return xc->validDataAddr(addr); }
int getInstAsid() { return xc->asid; }
int getDataAsid() { return xc->asid; }
Fault * dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
Fault * translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault * translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault * translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
template <class T>
Fault * read(Addr addr, T &data, unsigned flags, DynInstPtr inst);
template <class T>
Fault * write(T data, Addr addr, unsigned flags,
uint64_t *res, DynInstPtr inst);
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault * copySrcTranslate(Addr src);
Fault * copy(Addr dest);
private:
bool executeInst(DynInstPtr &inst);
void renameInst(DynInstPtr &inst);
void addInst(DynInstPtr &inst);
void commitHeadInst();
bool getOneInst();
Fault * fetchCacheLine();
InstSeqNum getAndIncrementInstSeq();
bool ambigMemAddr;
private:
InstSeqNum globalSeqNum;
DynInstPtr renameTable[ISA::TotalNumRegs];
DynInstPtr commitTable[ISA::TotalNumRegs];
// Might need a table of the shadow registers as well.
#if FULL_SYSTEM
DynInstPtr palShadowTable[ISA::NumIntRegs];
#endif
public:
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
// In the OoO case these shouldn't read from the XC but rather from the
// rename table of DynInsts. Also these likely shouldn't be called very
// often, other than when adding things into the xc during say a syscall.
uint64_t readIntReg(StaticInst<TheISA> *si, int idx)
{
return xc->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegInt(reg_idx);
}
void setIntReg(StaticInst<TheISA> *si, int idx, uint64_t val)
{
xc->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegSingle(StaticInst<TheISA> *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegSingle(reg_idx, val);
}
void setFloatRegDouble(StaticInst<TheISA> *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegDouble(reg_idx, val);
}
void setFloatRegInt(StaticInst<TheISA> *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegInt(reg_idx, val);
}
uint64_t readPC() { return PC; }
void setNextPC(Addr val) { nextPC = val; }
private:
Addr PC;
Addr nextPC;
unsigned issueWidth;
bool fetchRedirExcp;
bool fetchRedirBranch;
/** Mask to get a cache block's address. */
Addr cacheBlkMask;
unsigned cacheBlkSize;
Addr cacheBlkPC;
/** The cache line being fetched. */
uint8_t *cacheData;
protected:
bool cacheBlkValid;
private:
// Align an address (typically a PC) to the start of an I-cache block.
// We fold in the PISA 64- to 32-bit conversion here as well.
Addr icacheBlockAlignPC(Addr addr)
{
addr = ISA::realPCToFetchPC(addr);
return (addr & ~(cacheBlkMask));
}
unsigned instSize;
// ROB tracking stuff.
DynInstPtr robHeadPtr;
DynInstPtr robTailPtr;
unsigned robSize;
unsigned robInsts;
// List of outstanding EA instructions.
protected:
EAList eaList;
public:
void branchToTarget(Addr val)
{
if (!fetchRedirExcp) {
fetchRedirBranch = true;
PC = val;
}
}
// ISA stuff:
uint64_t readUniq() { return xc->readUniq(); }
void setUniq(uint64_t val) { xc->setUniq(val); }
uint64_t readFpcr() { return xc->readFpcr(); }
void setFpcr(uint64_t val) { xc->setFpcr(val); }
#if FULL_SYSTEM
uint64_t readIpr(int idx, Fault * &fault) { return xc->readIpr(idx, fault); }
Fault * setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
Fault * hwrei() { return xc->hwrei(); }
int readIntrFlag() { return xc->readIntrFlag(); }
void setIntrFlag(int val) { xc->setIntrFlag(val); }
bool inPalMode() { return xc->inPalMode(); }
void ev5_trap(Fault * fault) { xc->ev5_trap(fault); }
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
#else
void syscall() { xc->syscall(); }
#endif
ExecContext *xcBase() { return xc; }
};
// precise architected memory state accessor macros
template <class Impl>
template <class T>
Fault *
OoOCPU<Impl>::read(Addr addr, T &data, unsigned flags, DynInstPtr inst)
{
MemReqPtr readReq = new MemReq();
readReq->xc = xc;
readReq->asid = 0;
readReq->data = new uint8_t[64];
readReq->reset(addr, sizeof(T), flags);
// translate to physical address - This might be an ISA impl call
Fault * fault = translateDataReadReq(readReq);
// do functional access
if (fault == NoFault)
fault = xc->mem->read(readReq, data);
#if 0
if (traceData) {
traceData->setAddr(addr);
if (fault == NoFault)
traceData->setData(data);
}
#endif
// if we have a cache, do cache access too
if (fault == NoFault && dcacheInterface) {
readReq->cmd = Read;
readReq->completionEvent = NULL;
readReq->time = curTick;
/*MemAccessResult result = */dcacheInterface->access(readReq);
if (dcacheInterface->doEvents()) {
readReq->completionEvent = new DCacheCompletionEvent(this, inst,
dcceIt);
}
}
if (!dcacheInterface && (readReq->flags & UNCACHEABLE))
recordEvent("Uncached Read");
return fault;
}
template <class Impl>
template <class T>
Fault *
OoOCPU<Impl>::write(T data, Addr addr, unsigned flags,
uint64_t *res, DynInstPtr inst)
{
MemReqPtr writeReq = new MemReq();
writeReq->xc = xc;
writeReq->asid = 0;
writeReq->data = new uint8_t[64];
#if 0
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
#endif
writeReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault * fault = translateDataWriteReq(writeReq);
// do functional access
if (fault == NoFault)
fault = xc->write(writeReq, data);
if (fault == NoFault && dcacheInterface) {
writeReq->cmd = Write;
memcpy(writeReq->data,(uint8_t *)&data,writeReq->size);
writeReq->completionEvent = NULL;
writeReq->time = curTick;
/*MemAccessResult result = */dcacheInterface->access(writeReq);
if (dcacheInterface->doEvents()) {
writeReq->completionEvent = new DCacheCompletionEvent(this, inst,
dcceIt);
}
}
if (res && (fault == NoFault))
*res = writeReq->result;
if (!dcacheInterface && (writeReq->flags & UNCACHEABLE))
recordEvent("Uncached Write");
return fault;
}
#endif // __CPU_OOO_CPU_OOO_CPU_HH__