gem5/src/mem/ruby/system/DMASequencer.cc
Andreas Hansson 0fcb376e5f mem: Make cache terminology easier to understand
This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.

The following name changes are made:

* the packet memInhibit flag is renamed to cacheResponding

* the packet sharedAsserted flag is renamed to hasSharers

* the packet NeedsExclusive attribute is renamed to NeedsWritable

* the packet isSupplyExclusive is renamed responderHadWritable

* the MSHR pendingDirty is renamed to pendingModified

The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
2015-12-31 09:32:58 -05:00

347 lines
11 KiB
C++

/*
* Copyright (c) 2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <memory>
#include "debug/Config.hh"
#include "debug/Drain.hh"
#include "debug/RubyDma.hh"
#include "debug/RubyStats.hh"
#include "mem/protocol/SequencerMsg.hh"
#include "mem/ruby/system/DMASequencer.hh"
#include "mem/ruby/system/RubySystem.hh"
#include "sim/system.hh"
DMASequencer::DMASequencer(const Params *p)
: MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
m_controller(NULL), m_mandatory_q_ptr(NULL),
m_usingRubyTester(p->using_ruby_tester),
slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
p->ruby_system->getAccessBackingStore()),
system(p->system), retry(false)
{
assert(m_version != -1);
}
void
DMASequencer::init()
{
MemObject::init();
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
m_is_busy = false;
m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
slave_port.sendRangeChange();
}
BaseSlavePort &
DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
{
// used by the CPUs to connect the caches to the interconnect, and
// for the x86 case also the interrupt master
if (if_name != "slave") {
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
} else {
return slave_port;
}
}
DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
DMASequencer *_port, PortID id, RubySystem* _ruby_system,
bool _access_backing_store)
: QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
m_ruby_system(_ruby_system), access_backing_store(_access_backing_store)
{
DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
}
bool
DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
pkt->getAddr(), id);
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
if (pkt->cacheResponding())
panic("DMASequencer should never see a request with the "
"cacheResponding flag set\n");
assert(isPhysMemAddress(pkt->getAddr()));
assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = seq->makeRequest(pkt);
// If the request successfully issued then we should return true.
// Otherwise, we need to tell the port to retry at a later point
// and return false.
if (requestStatus == RequestStatus_Issued) {
DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
pkt->getAddr());
return true;
}
// Unless one is using the ruby tester, record the stalled M5 port for
// later retry when the sequencer becomes free.
if (!seq->m_usingRubyTester) {
seq->retry = true;
}
DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
return false;
}
void
DMASequencer::ruby_hit_callback(PacketPtr pkt)
{
DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
pkt->getAddr());
// The packet was destined for memory and has not yet been turned
// into a response
assert(system->isMemAddr(pkt->getAddr()));
assert(pkt->isRequest());
slave_port.hitCallback(pkt);
// If we had to stall the slave ports, wake it up because
// the sequencer likely has free resources now.
if (retry) {
retry = false;
DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n",
slave_port.name());
slave_port.sendRetryReq();
}
testDrainComplete();
}
void
DMASequencer::testDrainComplete()
{
//If we weren't able to drain before, we might be able to now.
if (drainState() == DrainState::Draining) {
unsigned int drainCount = outstandingCount();
DPRINTF(Drain, "Drain count: %u\n", drainCount);
if (drainCount == 0) {
DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
signalDrainDone();
}
}
}
DrainState
DMASequencer::drain()
{
if (isDeadlockEventScheduled()) {
descheduleDeadlockEvent();
}
// If the DMASequencer is not empty, then it needs to clear all outstanding
// requests before it should call signalDrainDone()
DPRINTF(Config, "outstanding count %d\n", outstandingCount());
// Set status
if (outstandingCount() > 0) {
DPRINTF(Drain, "DMASequencer not drained\n");
return DrainState::Draining;
} else {
return DrainState::Drained;
}
}
void
DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
assert(!pkt->isLLSC());
assert(!pkt->isFlush());
DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
// turn packet around to go back to requester if response expected
if (access_backing_store) {
m_ruby_system->getPhysMem()->access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
if (needsResponse) {
DPRINTF(RubyDma, "Sending packet back over port\n");
// send next cycle
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
RubySystem *rs = seq->m_ruby_system;
schedTimingResp(pkt, curTick() + rs->clockPeriod());
} else {
delete pkt;
}
DPRINTF(RubyDma, "Hit callback done!\n");
}
bool
DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
{
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
return seq->system->isMemAddr(addr);
}
RequestStatus
DMASequencer::makeRequest(PacketPtr pkt)
{
if (m_is_busy) {
return RequestStatus_BufferFull;
}
Addr paddr = pkt->getAddr();
uint8_t* data = pkt->getPtr<uint8_t>();
int len = pkt->getSize();
bool write = pkt->isWrite();
assert(!m_is_busy); // only support one outstanding DMA request
m_is_busy = true;
active_request.start_paddr = paddr;
active_request.write = write;
active_request.data = data;
active_request.len = len;
active_request.bytes_completed = 0;
active_request.bytes_issued = 0;
active_request.pkt = pkt;
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = paddr;
msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress());
msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
int offset = paddr & m_data_block_mask;
msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
len : RubySystem::getBlockSizeBytes() - offset;
if (write && (data != NULL)) {
if (active_request.data != NULL) {
msg->getDataBlk().setData(data, offset, msg->getLen());
}
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
return RequestStatus_Issued;
}
void
DMASequencer::issueNext()
{
assert(m_is_busy);
active_request.bytes_completed = active_request.bytes_issued;
if (active_request.len == active_request.bytes_completed) {
//
// Must unset the busy flag before calling back the dma port because
// the callback may cause a previously nacked request to be reissued
//
DPRINTF(RubyDma, "DMA request completed\n");
m_is_busy = false;
ruby_hit_callback(active_request.pkt);
return;
}
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = active_request.start_paddr +
active_request.bytes_completed;
assert((msg->getPhysicalAddress() & m_data_block_mask) == 0);
msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress());
msg->getType() = (active_request.write ? SequencerRequestType_ST :
SequencerRequestType_LD);
msg->getLen() =
(active_request.len -
active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
active_request.len - active_request.bytes_completed :
RubySystem::getBlockSizeBytes());
if (active_request.write) {
msg->getDataBlk().
setData(&active_request.data[active_request.bytes_completed],
0, msg->getLen());
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
DPRINTF(RubyDma,
"DMA request bytes issued %d, bytes completed %d, total len %d\n",
active_request.bytes_issued, active_request.bytes_completed,
active_request.len);
}
void
DMASequencer::dataCallback(const DataBlock & dblk)
{
assert(m_is_busy);
int len = active_request.bytes_issued - active_request.bytes_completed;
int offset = 0;
if (active_request.bytes_completed == 0)
offset = active_request.start_paddr & m_data_block_mask;
assert(!active_request.write);
if (active_request.data != NULL) {
memcpy(&active_request.data[active_request.bytes_completed],
dblk.getData(offset, len), len);
}
issueNext();
}
void
DMASequencer::ackCallback()
{
issueNext();
}
void
DMASequencer::recordRequestType(DMASequencerRequestType requestType)
{
DPRINTF(RubyStats, "Recorded statistic: %s\n",
DMASequencerRequestType_to_string(requestType));
}
DMASequencer *
DMASequencerParams::create()
{
return new DMASequencer(this);
}