gem5/splash2/codes/apps/ocean/contiguous_partitions/linkup.C
Sanchayan Maity 2fcc51c2c1 Commit splash2 benchmark
While at it also add the libpthread static library amd m5op_x86
for matrix multiplication test code as well.

Note that the splash2 benchmark code does not comply with gem5
coding guidelines. Academic guys never seem to follow 80 columns
and no whitespace guideline :(.
2017-04-26 20:50:15 +05:30

197 lines
5.5 KiB
C

/*************************************************************************/
/* */
/* Copyright (c) 1994 Stanford University */
/* */
/* All rights reserved. */
/* */
/* Permission is given to use, copy, and modify this software for any */
/* non-commercial purpose as long as this copyright notice is not */
/* removed. All other uses, including redistribution in whole or in */
/* part, are forbidden without prior written permission. */
/* */
/* This software is provided with absolutely no warranty and no */
/* support. */
/* */
/*************************************************************************/
/* Set all the pointers to the proper locations for the q_multi and
rhs_multi data structures */
EXTERN_ENV
#include "decs.h"
void link_all()
{
long i;
long j;
for (j=0;j<nprocs;j++) {
linkup(psium[j]);
linkup(psilm[j]);
linkup(psib[j]);
linkup(ga[j]);
linkup(gb[j]);
linkup(work2[j]);
linkup(work3[j]);
linkup(work6[j]);
linkup(tauz[j]);
linkup(oldga[j]);
linkup(oldgb[j]);
for (i=0;i<=1;i++) {
linkup(psi[j][i]);
linkup(psim[j][i]);
linkup(work1[j][i]);
linkup(work4[j][i]);
linkup(work5[j][i]);
linkup(work7[j][i]);
linkup(temparray[j][i]);
}
}
link_multi();
}
void linkup(double **row_ptr)
{
long i;
double *a;
double **row;
double **y;
long x_part;
long y_part;
x_part = (jm-2)/xprocs + 2;
y_part = (im-2)/yprocs + 2;
row = row_ptr;
y = row + y_part;
a = (double *) y;
for (i=0;i<y_part;i++) {
*row = (double *) a;
row++;
a += x_part;
}
}
void link_multi()
{
long i;
long j;
long l;
double *a;
double **row;
double **y;
unsigned long z;
unsigned long zz;
long x_part;
long y_part;
unsigned long d_size;
z = ((unsigned long) q_multi + nprocs*sizeof(double ***));
if (nprocs%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
z += sizeof(double ***);
}
d_size = numlev*sizeof(double **);
if (numlev%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
d_size += sizeof(double **);
}
for (i=0;i<numlev;i++) {
d_size += ((imx[i]-2)/yprocs+2)*((jmx[i]-2)/xprocs+2)*sizeof(double)+
((imx[i]-2)/yprocs+2)*sizeof(double *);
}
for (i=0;i<nprocs;i++) {
q_multi[i] = (double ***) z;
z += d_size;
}
for (j=0;j<nprocs;j++) {
zz = (unsigned long) q_multi[j];
zz += numlev*sizeof(double **);
if (numlev%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
zz += sizeof(double **);
}
for (i=0;i<numlev;i++) {
d_size = ((imx[i]-2)/yprocs+2)*((jmx[i]-2)/xprocs+2)*sizeof(double)+
((imx[i]-2)/yprocs+2)*sizeof(double *);
q_multi[j][i] = (double **) zz;
zz += d_size;
}
}
for (l=0;l<numlev;l++) {
x_part = (jmx[l]-2)/xprocs + 2;
y_part = (imx[l]-2)/yprocs + 2;
for (j=0;j<nprocs;j++) {
row = q_multi[j][l];
y = row + y_part;
a = (double *) y;
for (i=0;i<y_part;i++) {
*row = (double *) a;
row++;
a += x_part;
}
}
}
z = ((unsigned long) rhs_multi + nprocs*sizeof(double ***));
if (nprocs%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
z += sizeof(double ***);
}
d_size = numlev*sizeof(double **);
if (numlev%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
d_size += sizeof(double **);
}
for (i=0;i<numlev;i++) {
d_size += ((imx[i]-2)/yprocs+2)*((jmx[i]-2)/xprocs+2)*sizeof(double)+
((imx[i]-2)/yprocs+2)*sizeof(double *);
}
for (i=0;i<nprocs;i++) {
rhs_multi[i] = (double ***) z;
z += d_size;
}
for (j=0;j<nprocs;j++) {
zz = (unsigned long) rhs_multi[j];
zz += numlev*sizeof(double **);
if (numlev%2 == 1) { /* To make sure that the actual data
starts double word aligned, add an extra
pointer */
zz += sizeof(double **);
}
for (i=0;i<numlev;i++) {
d_size = ((imx[i]-2)/yprocs+2)*((jmx[i]-2)/xprocs+2)*sizeof(double)+
((imx[i]-2)/yprocs+2)*sizeof(double *);
rhs_multi[j][i] = (double **) zz;
zz += d_size;
}
}
for (l=0;l<numlev;l++) {
x_part = (jmx[l]-2)/xprocs + 2;
y_part = (imx[l]-2)/yprocs + 2;
for (j=0;j<nprocs;j++) {
row = rhs_multi[j][l];
y = row + y_part;
a = (double *) y;
for (i=0;i<y_part;i++) {
*row = (double *) a;
row++;
a += x_part;
}
}
}
}