gem5/ext/mcpat/cacti/uca.h
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

99 lines
3.4 KiB
C++
Executable file

/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#ifndef __UCA_H__
#define __UCA_H__
#include "area.h"
#include "bank.h"
#include "component.h"
#include "htree2.h"
#include "parameter.h"
class UCA : public Component {
public:
UCA(const DynamicParameter & dyn_p);
~UCA();
double compute_delays(double inrisetime); // returns outrisetime
void compute_power_energy();
DynamicParameter dp;
Bank bank;
Htree2 * htree_in_add;
Htree2 * htree_in_data;
Htree2 * htree_out_data;
Htree2 * htree_in_search;
Htree2 * htree_out_search;
powerDef power_routing_to_bank;
uint32_t nbanks;
int num_addr_b_bank;
int num_di_b_bank;
int num_do_b_bank;
int num_si_b_bank;
int num_so_b_bank;
int RWP;
int ERP;
int EWP;
int SCHP;
double area_all_dataramcells;
double dyn_read_energy_from_closed_page;
double dyn_read_energy_from_open_page;
double dyn_read_energy_remaining_words_in_burst;
double refresh_power; // only for DRAM
double activate_energy;
double read_energy;
double write_energy;
double precharge_energy;
double leak_power_subbank_closed_page;
double leak_power_subbank_open_page;
double leak_power_request_and_reply_networks;
double delay_array_to_sa_mux_lev_1_decoder;
double delay_array_to_sa_mux_lev_2_decoder;
double delay_before_subarray_output_driver;
double delay_from_subarray_out_drv_to_out;
double access_time;
double precharge_delay;
double multisubbank_interleave_cycle_time;
};
#endif