gem5/src/cpu/base.cc
Lisa Hsu 9c901225f8 there are two main thrusts of this changeset.
1) return the periodicity of checkpoints back into the code (i.e. make m5 checkpoint n m meaningful again).
2) to do this, i had to much around with being able to repeatedly schedule and SimLoopExitEvent, which led to changes in how exit simloop events are handled to make this easier.

src/arch/alpha/isa/decoder.isa:
src/mem/cache/cache_impl.hh:
    modify arg. order for new calling convention of exitSimLoop.
src/cpu/base.cc:
src/sim/main.cc:
src/sim/pseudo_inst.cc:
src/sim/root.cc:
    now, instead of creating a new SimLoopExitEvent, call a wrapper schedExitSimLoop which handles all the default args.
src/sim/sim_events.cc:
src/sim/sim_events.hh:
src/sim/sim_exit.hh:
    add the periodicity of checkpointing back into the code.

    to facilitate this, there are now two wrappers (instead of just overloading exitSimLoop).  exitSimLoop is only for exiting NOW (i.e. at curTick), while schedExitSimLoop schedules and exit event for the future.

--HG--
extra : convert_revision : c61f4bf05517172edd2c83368fd10bb0f0678029
2006-10-06 01:27:02 -04:00

434 lines
12 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "cpu/base.hh"
#include "cpu/cpuevent.hh"
#include "cpu/thread_context.hh"
#include "cpu/profile.hh"
#include "sim/sim_exit.hh"
#include "sim/param.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/system.hh"
#include "base/trace.hh"
// Hack
#include "sim/stat_control.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival,
BaseCPU *_cpu)
: Event(q, Event::Stat_Event_Pri), interval(ival),
lastNumInst(0), cpu(_cpu)
{
if (interval)
schedule(curTick + interval);
}
void
CPUProgressEvent::process()
{
Counter temp = cpu->totalInstructions();
#ifndef NDEBUG
double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1));
DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
cpu->name(), temp - lastNumInst, ipc);
ipc = 0.0;
#else
cprintf("%lli: %s progress event, instructions committed: %lli\n",
curTick, cpu->name(), temp - lastNumInst);
#endif
lastNumInst = temp;
schedule(curTick + interval);
}
const char *
CPUProgressEvent::description()
{
return "CPU Progress event";
}
#if FULL_SYSTEM
BaseCPU::BaseCPU(Params *p)
: MemObject(p->name), clock(p->clock), checkInterrupts(true),
params(p), number_of_threads(p->numberOfThreads), system(p->system)
#else
BaseCPU::BaseCPU(Params *p)
: MemObject(p->name), clock(p->clock), params(p),
number_of_threads(p->numberOfThreads), system(p->system)
#endif
{
// currentTick = curTick;
DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
this);
if (number_of_threads > maxThreadsPerCPU)
maxThreadsPerCPU = number_of_threads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
schedExitSimLoop("a thread reached the max instruction count",
p->max_insts_any_thread, 0,
comInstEventQueue[i]);
if (p->max_insts_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comInstEventQueue[i],
"all threads reached the max instruction count",
p->max_insts_all_threads, *counter);
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comLoadEventQueue[i] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
schedExitSimLoop("a thread reached the max load count",
p->max_loads_any_thread, 0,
comLoadEventQueue[i]);
if (p->max_loads_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comLoadEventQueue[i],
"all threads reached the max load count",
p->max_loads_all_threads, *counter);
}
#if FULL_SYSTEM
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
#endif
functionTracingEnabled = false;
if (p->functionTrace) {
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->functionTraceStart;
if (p->functionTraceStart == 0) {
functionTracingEnabled = true;
} else {
Event *e =
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
true);
e->schedule(p->functionTraceStart);
}
}
#if FULL_SYSTEM
profileEvent = NULL;
if (params->profile)
profileEvent = new ProfileEvent(this, params->profile);
#endif
}
BaseCPU::Params::Params()
{
#if FULL_SYSTEM
profile = false;
#endif
checker = NULL;
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
}
void
BaseCPU::init()
{
if (!params->deferRegistration)
registerThreadContexts();
}
void
BaseCPU::startup()
{
#if FULL_SYSTEM
if (!params->deferRegistration && profileEvent)
profileEvent->schedule(curTick);
#endif
if (params->progress_interval) {
new CPUProgressEvent(&mainEventQueue, params->progress_interval,
this);
}
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
int size = threadContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
threadContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
threadContexts[0]->regStats(name());
#if FULL_SYSTEM
#endif
}
void
BaseCPU::registerThreadContexts()
{
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
#if FULL_SYSTEM
int id = params->cpu_id;
if (id != -1)
id += i;
tc->setCpuId(system->registerThreadContext(tc, id));
#else
tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
#endif
}
}
void
BaseCPU::switchOut()
{
// panic("This CPU doesn't support sampling!");
#if FULL_SYSTEM
if (profileEvent && profileEvent->scheduled())
profileEvent->deschedule();
#endif
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(threadContexts.size() == oldCPU->threadContexts.size());
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *newTC = threadContexts[i];
ThreadContext *oldTC = oldCPU->threadContexts[i];
newTC->takeOverFrom(oldTC);
CpuEvent::replaceThreadContext(oldTC, newTC);
assert(newTC->readCpuId() == oldTC->readCpuId());
#if FULL_SYSTEM
system->replaceThreadContext(newTC, newTC->readCpuId());
#else
assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
#endif
// TheISA::compareXCs(oldXC, newXC);
}
#if FULL_SYSTEM
for (int i = 0; i < TheISA::NumInterruptLevels; ++i)
interrupts[i] = oldCPU->interrupts[i];
intstatus = oldCPU->intstatus;
checkInterrupts = oldCPU->checkInterrupts;
for (int i = 0; i < threadContexts.size(); ++i)
threadContexts[i]->profileClear();
// The Sampler must take care of this!
// if (profileEvent)
// profileEvent->schedule(curTick);
#endif
}
#if FULL_SYSTEM
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
: Event(&mainEventQueue), cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
ThreadContext *tc = cpu->threadContexts[i];
tc->profileSample();
}
schedule(curTick + interval);
}
void
BaseCPU::post_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
checkInterrupts = true;
interrupts[int_num] |= 1 << index;
intstatus |= (ULL(1) << int_num);
}
void
BaseCPU::clear_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
interrupts[int_num] &= ~(1 << index);
if (interrupts[int_num] == 0)
intstatus &= ~(ULL(1) << int_num);
}
void
BaseCPU::clear_interrupts()
{
DPRINTF(Interrupt, "Interrupts all cleared\n");
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
SERIALIZE_SCALAR(intstatus);
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
UNSERIALIZE_SCALAR(intstatus);
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick - functionEntryTick, curTick, sym_str);
functionEntryTick = curTick;
}
}
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)