gem5/dev/tsunami_cchip.cc
Ali Saidi f6fc18f03d fullsys now builds and runs for about one cycle
SConscript:
    easier to fix than temporarily remove
cpu/simple/cpu.cc:
cpu/simple/cpu.hh:
    mem needed for both fullsys and syscall
dev/baddev.cc:
    fix for new mem system
dev/io_device.cc:
    fix typo
dev/io_device.hh:
    PioDevice needs to be a memobject
dev/isa_fake.cc:
dev/pciconfigall.cc:
dev/pciconfigall.hh:
    fix for new mem systems
dev/platform.cc:
dev/platform.hh:
dev/tsunami.cc:
dev/tsunami.hh:
    rather than the platform have a pointer to pciconfig, go the other
    way so all devices are the same and can have a platform pointer
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_io.hh:
dev/tsunami_pchip.cc:
dev/tsunami_pchip.hh:
dev/uart8250.cc:
python/m5/objects/AlphaConsole.py:
python/m5/objects/BadDevice.py:
python/m5/objects/BaseCPU.py:
python/m5/objects/Device.py:
python/m5/objects/Pci.py:
python/m5/objects/PhysicalMemory.py:
python/m5/objects/System.py:
python/m5/objects/Tsunami.py:
python/m5/objects/Uart.py:
    fixes for newmem

--HG--
extra : convert_revision : b7b67e19095cca64889f6307725aa2f3d84c7105
2006-04-11 13:42:47 -04:00

562 lines
17 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Emulation of the Tsunami CChip CSRs
*/
#include <deque>
#include <string>
#include <vector>
#include "arch/alpha/ev5.hh"
#include "base/trace.hh"
#include "dev/tsunami_cchip.hh"
#include "dev/tsunamireg.h"
#include "dev/tsunami.hh"
#include "mem/port.hh"
#include "cpu/exec_context.hh"
#include "cpu/intr_control.hh"
#include "sim/builder.hh"
#include "sim/system.hh"
using namespace std;
//Should this be AlphaISA?
using namespace TheISA;
TsunamiCChip::TsunamiCChip(Params *p)
: BasicPioDevice(p), tsunami(p->tsunami)
{
pioSize = 0xfffffff;
drir = 0;
ipint = 0;
itint = 0;
for (int x = 0; x < Tsunami::Max_CPUs; x++)
{
dim[x] = 0;
dir[x] = 0;
}
//Put back pointer in tsunami
tsunami->cchip = this;
}
Tick
TsunamiCChip::read(Packet &pkt)
{
DPRINTF(Tsunami, "read va=%#x size=%d\n", pkt.addr, pkt.size);
assert(pkt.result == Unknown);
assert(pkt.addr > pioAddr && pkt.addr < pioAddr + pioSize);
pkt.time = curTick + pioDelay;
Addr regnum = (pkt.addr - pioAddr) >> 6;
Addr daddr = (pkt.addr - pioAddr);
uint64_t *data64;
switch (pkt.size) {
case sizeof(uint64_t):
if (!pkt.data) {
data64 = new uint64_t;
pkt.data = (uint8_t*)data64;
} else
data64 = (uint64_t*)pkt.data;
if (daddr & TSDEV_CC_BDIMS)
{
*data64 = dim[(daddr >> 4) & 0x3F];
break;
}
if (daddr & TSDEV_CC_BDIRS)
{
*data64 = dir[(daddr >> 4) & 0x3F];
break;
}
switch(regnum) {
case TSDEV_CC_CSR:
*data64 = 0x0;
break;
case TSDEV_CC_MTR:
panic("TSDEV_CC_MTR not implemeted\n");
break;
case TSDEV_CC_MISC:
*data64 = (ipint << 8) & 0xF | (itint << 4) & 0xF |
(pkt.req->getCpuNum() & 0x3);
break;
case TSDEV_CC_AAR0:
case TSDEV_CC_AAR1:
case TSDEV_CC_AAR2:
case TSDEV_CC_AAR3:
*data64 = 0;
break;
case TSDEV_CC_DIM0:
*data64 = dim[0];
break;
case TSDEV_CC_DIM1:
*data64 = dim[1];
break;
case TSDEV_CC_DIM2:
*data64 = dim[2];
break;
case TSDEV_CC_DIM3:
*data64 = dim[3];
break;
case TSDEV_CC_DIR0:
*data64 = dir[0];
break;
case TSDEV_CC_DIR1:
*data64 = dir[1];
break;
case TSDEV_CC_DIR2:
*data64 = dir[2];
break;
case TSDEV_CC_DIR3:
*data64 = dir[3];
break;
case TSDEV_CC_DRIR:
*data64 = drir;
break;
case TSDEV_CC_PRBEN:
panic("TSDEV_CC_PRBEN not implemented\n");
break;
case TSDEV_CC_IIC0:
case TSDEV_CC_IIC1:
case TSDEV_CC_IIC2:
case TSDEV_CC_IIC3:
panic("TSDEV_CC_IICx not implemented\n");
break;
case TSDEV_CC_MPR0:
case TSDEV_CC_MPR1:
case TSDEV_CC_MPR2:
case TSDEV_CC_MPR3:
panic("TSDEV_CC_MPRx not implemented\n");
break;
case TSDEV_CC_IPIR:
*data64 = ipint;
break;
case TSDEV_CC_ITIR:
*data64 = itint;
break;
default:
panic("default in cchip read reached, accessing 0x%x\n");
} // uint64_t
break;
case sizeof(uint32_t):
case sizeof(uint16_t):
case sizeof(uint8_t):
default:
panic("invalid access size(?) for tsunami register!\n");
}
DPRINTFN("Tsunami CChip: read regnum=%#x size=%d data=%lld\n", regnum,
pkt.size, *data64);
pkt.result = Success;
return pioDelay;
}
Tick
TsunamiCChip::write(Packet &pkt)
{
pkt.time = curTick + pioDelay;
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
Addr daddr = pkt.addr - pioAddr;
Addr regnum = (pkt.addr - pioAddr) >> 6 ;
uint64_t val = *(uint64_t *)pkt.data;
assert(pkt.size == sizeof(uint64_t));
DPRINTF(Tsunami, "write - addr=%#x value=%#x\n", pkt.addr, val);
bool supportedWrite = false;
if (daddr & TSDEV_CC_BDIMS)
{
int number = (daddr >> 4) & 0x3F;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
olddim = dim[number];
olddir = dir[number];
dim[number] = val;
dir[number] = dim[number] & drir;
for(int x = 0; x < Tsunami::Max_CPUs; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in posting dir"
" interrupt to cpu %d\n", number);
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n", number);
}
}
}
} else {
switch(regnum) {
case TSDEV_CC_CSR:
panic("TSDEV_CC_CSR write\n");
case TSDEV_CC_MTR:
panic("TSDEV_CC_MTR write not implemented\n");
case TSDEV_CC_MISC:
uint64_t ipreq;
ipreq = (val >> 12) & 0xF;
//If it is bit 12-15, this is an IPI post
if (ipreq) {
reqIPI(ipreq);
supportedWrite = true;
}
//If it is bit 8-11, this is an IPI clear
uint64_t ipintr;
ipintr = (val >> 8) & 0xF;
if (ipintr) {
clearIPI(ipintr);
supportedWrite = true;
}
//If it is the 4-7th bit, clear the RTC interrupt
uint64_t itintr;
itintr = (val >> 4) & 0xF;
if (itintr) {
clearITI(itintr);
supportedWrite = true;
}
// ignore NXMs
if (val & 0x10000000)
supportedWrite = true;
if(!supportedWrite)
panic("TSDEV_CC_MISC write not implemented\n");
case TSDEV_CC_AAR0:
case TSDEV_CC_AAR1:
case TSDEV_CC_AAR2:
case TSDEV_CC_AAR3:
panic("TSDEV_CC_AARx write not implemeted\n");
case TSDEV_CC_DIM0:
case TSDEV_CC_DIM1:
case TSDEV_CC_DIM2:
case TSDEV_CC_DIM3:
int number;
if(regnum == TSDEV_CC_DIM0)
number = 0;
else if(regnum == TSDEV_CC_DIM1)
number = 1;
else if(regnum == TSDEV_CC_DIM2)
number = 2;
else
number = 3;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
olddim = dim[number];
olddir = dir[number];
dim[number] = val;
dir[number] = dim[number] & drir;
for(int x = 0; x < 64; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "posting dir interrupt to cpu 0\n");
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n",
x);
}
}
}
break;
case TSDEV_CC_DIR0:
case TSDEV_CC_DIR1:
case TSDEV_CC_DIR2:
case TSDEV_CC_DIR3:
panic("TSDEV_CC_DIR write not implemented\n");
case TSDEV_CC_DRIR:
panic("TSDEV_CC_DRIR write not implemented\n");
case TSDEV_CC_PRBEN:
panic("TSDEV_CC_PRBEN write not implemented\n");
case TSDEV_CC_IIC0:
case TSDEV_CC_IIC1:
case TSDEV_CC_IIC2:
case TSDEV_CC_IIC3:
panic("TSDEV_CC_IICx write not implemented\n");
case TSDEV_CC_MPR0:
case TSDEV_CC_MPR1:
case TSDEV_CC_MPR2:
case TSDEV_CC_MPR3:
panic("TSDEV_CC_MPRx write not implemented\n");
case TSDEV_CC_IPIR:
clearIPI(val);
break;
case TSDEV_CC_ITIR:
clearITI(val);
break;
case TSDEV_CC_IPIQ:
reqIPI(val);
break;
default:
panic("default in cchip read reached, accessing 0x%x\n");
} // swtich(regnum)
} // not BIG_TSUNAMI write
pkt.result = Success;
return pioDelay;
}
void
TsunamiCChip::clearIPI(uint64_t ipintr)
{
int numcpus = tsunami->intrctrl->cpu->system->execContexts.size();
assert(numcpus <= Tsunami::Max_CPUs);
if (ipintr) {
for (int cpunum=0; cpunum < numcpus; cpunum++) {
// Check each cpu bit
uint64_t cpumask = ULL(1) << cpunum;
if (ipintr & cpumask) {
// Check if there is a pending ipi
if (ipint & cpumask) {
ipint &= ~cpumask;
tsunami->intrctrl->clear(cpunum, TheISA::INTLEVEL_IRQ3, 0);
DPRINTF(IPI, "clear IPI IPI cpu=%d\n", cpunum);
}
else
warn("clear IPI for CPU=%d, but NO IPI\n", cpunum);
}
}
}
else
panic("Big IPI Clear, but not processors indicated\n");
}
void
TsunamiCChip::clearITI(uint64_t itintr)
{
int numcpus = tsunami->intrctrl->cpu->system->execContexts.size();
assert(numcpus <= Tsunami::Max_CPUs);
if (itintr) {
for (int i=0; i < numcpus; i++) {
uint64_t cpumask = ULL(1) << i;
if (itintr & cpumask & itint) {
tsunami->intrctrl->clear(i, TheISA::INTLEVEL_IRQ2, 0);
itint &= ~cpumask;
DPRINTF(Tsunami, "clearing rtc interrupt to cpu=%d\n", i);
}
}
}
else
panic("Big ITI Clear, but not processors indicated\n");
}
void
TsunamiCChip::reqIPI(uint64_t ipreq)
{
int numcpus = tsunami->intrctrl->cpu->system->execContexts.size();
assert(numcpus <= Tsunami::Max_CPUs);
if (ipreq) {
for (int cpunum=0; cpunum < numcpus; cpunum++) {
// Check each cpu bit
uint64_t cpumask = ULL(1) << cpunum;
if (ipreq & cpumask) {
// Check if there is already an ipi (bits 8:11)
if (!(ipint & cpumask)) {
ipint |= cpumask;
tsunami->intrctrl->post(cpunum, TheISA::INTLEVEL_IRQ3, 0);
DPRINTF(IPI, "send IPI cpu=%d\n", cpunum);
}
else
warn("post IPI for CPU=%d, but IPI already\n", cpunum);
}
}
}
else
panic("Big IPI Request, but not processors indicated\n");
}
void
TsunamiCChip::postRTC()
{
int size = tsunami->intrctrl->cpu->system->execContexts.size();
assert(size <= Tsunami::Max_CPUs);
for (int i = 0; i < size; i++) {
uint64_t cpumask = ULL(1) << i;
if (!(cpumask & itint)) {
itint |= cpumask;
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ2, 0);
DPRINTF(Tsunami, "Posting RTC interrupt to cpu=%d", i);
}
}
}
void
TsunamiCChip::postDRIR(uint32_t interrupt)
{
uint64_t bitvector = ULL(1) << interrupt;
uint64_t size = tsunami->intrctrl->cpu->system->execContexts.size();
assert(size <= Tsunami::Max_CPUs);
drir |= bitvector;
for(int i=0; i < size; i++) {
dir[i] = dim[i] & drir;
if (dim[i] & bitvector) {
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "posting dir interrupt to cpu %d,"
"interrupt %d\n",i, interrupt);
}
}
}
void
TsunamiCChip::clearDRIR(uint32_t interrupt)
{
uint64_t bitvector = ULL(1) << interrupt;
uint64_t size = tsunami->intrctrl->cpu->system->execContexts.size();
assert(size <= Tsunami::Max_CPUs);
if (drir & bitvector)
{
drir &= ~bitvector;
for(int i=0; i < size; i++) {
if (dir[i] & bitvector) {
tsunami->intrctrl->clear(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "clearing dir interrupt to cpu %d,"
"interrupt %d\n",i, interrupt);
}
dir[i] = dim[i] & drir;
}
}
else
DPRINTF(Tsunami, "Spurrious clear? interrupt %d\n", interrupt);
}
void
TsunamiCChip::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(dim, Tsunami::Max_CPUs);
SERIALIZE_ARRAY(dir, Tsunami::Max_CPUs);
SERIALIZE_SCALAR(ipint);
SERIALIZE_SCALAR(itint);
SERIALIZE_SCALAR(drir);
}
void
TsunamiCChip::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(dim, Tsunami::Max_CPUs);
UNSERIALIZE_ARRAY(dir, Tsunami::Max_CPUs);
UNSERIALIZE_SCALAR(ipint);
UNSERIALIZE_SCALAR(itint);
UNSERIALIZE_SCALAR(drir);
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiCChip)
Param<Addr> pio_addr;
Param<Tick> pio_latency;
SimObjectParam<Platform *> platform;
SimObjectParam<System *> system;
SimObjectParam<Tsunami *> tsunami;
END_DECLARE_SIM_OBJECT_PARAMS(TsunamiCChip)
BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiCChip)
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(pio_latency, "Programmed IO latency"),
INIT_PARAM(platform, "platform"),
INIT_PARAM(system, "system object"),
INIT_PARAM(tsunami, "Tsunami")
END_INIT_SIM_OBJECT_PARAMS(TsunamiCChip)
CREATE_SIM_OBJECT(TsunamiCChip)
{
TsunamiCChip::Params *p = new TsunamiCChip::Params;
p->name = getInstanceName();
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->platform = platform;
p->system = system;
p->tsunami = tsunami;
return new TsunamiCChip(p);
}
REGISTER_SIM_OBJECT("TsunamiCChip", TsunamiCChip)