04745696b6
SConscript: Added new CPU files to build. arch/alpha/isa_desc: Changed rduniq and wruniq to be nonspeculative because the uniq register is not renamed. arch/isa_parser.py: Added new CPU exec method. base/statistics.hh: Minor change for namespace conflict. Probably can change back one the new CPU files are cleaned up. base/traceflags.py: Added new CPU trace flags. cpu/static_inst.hh: Changed static inst to use a file that defines the execute functions. --HG-- extra : convert_revision : bd4ce34361308280168324817fc1258dd253e519
617 lines
18 KiB
C++
617 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2001-2004 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __BASE_DYN_INST_HH__
|
|
#define __BASE_DYN_INST_HH__
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
#include "base/fast_alloc.hh"
|
|
#include "base/trace.hh"
|
|
|
|
#include "cpu/static_inst.hh"
|
|
#include "cpu/beta_cpu/comm.hh"
|
|
#include "cpu/full_cpu/bpred_update.hh"
|
|
#include "mem/functional_mem/main_memory.hh"
|
|
#include "cpu/full_cpu/spec_memory.hh"
|
|
#include "cpu/inst_seq.hh"
|
|
#include "cpu/full_cpu/op_class.hh"
|
|
#include "cpu/full_cpu/spec_state.hh"
|
|
|
|
/**
|
|
* @file
|
|
* Defines a dynamic instruction context.
|
|
*/
|
|
|
|
namespace Trace {
|
|
class InstRecord;
|
|
};
|
|
|
|
class BaseInst
|
|
{
|
|
};
|
|
|
|
template <class Impl>
|
|
class BaseDynInst : public FastAlloc
|
|
{
|
|
public:
|
|
// Typedef for the CPU.
|
|
typedef typename Impl::FullCPU FullCPU;
|
|
|
|
//Typedef to get the ISA.
|
|
typedef typename Impl::ISA ISA;
|
|
|
|
/// Binary machine instruction type.
|
|
typedef typename ISA::MachInst MachInst;
|
|
/// Memory address type.
|
|
typedef typename ISA::Addr Addr;
|
|
/// Logical register index type.
|
|
typedef typename ISA::RegIndex RegIndex;
|
|
/// Integer register index type.
|
|
typedef typename ISA::IntReg IntReg;
|
|
|
|
enum {
|
|
MaxInstSrcRegs = ISA::MaxInstSrcRegs, //< Max source regs
|
|
MaxInstDestRegs = ISA::MaxInstDestRegs, //< Max dest regs
|
|
};
|
|
|
|
StaticInstPtr<ISA> staticInst;
|
|
|
|
////////////////////////////////////////////
|
|
//
|
|
// INSTRUCTION EXECUTION
|
|
//
|
|
////////////////////////////////////////////
|
|
Trace::InstRecord *traceData;
|
|
|
|
// void setCPSeq(InstSeqNum seq);
|
|
|
|
template <class T>
|
|
Fault read(Addr addr, T &data, unsigned flags);
|
|
|
|
template <class T>
|
|
Fault write(T data, Addr addr, unsigned flags,
|
|
uint64_t *res);
|
|
|
|
|
|
IntReg *getIntegerRegs(void);
|
|
FunctionalMemory *getMemory(void);
|
|
|
|
void prefetch(Addr addr, unsigned flags);
|
|
void writeHint(Addr addr, int size, unsigned flags);
|
|
Fault copySrcTranslate(Addr src);
|
|
Fault copy(Addr dest);
|
|
|
|
public:
|
|
/** Is this instruction valid. */
|
|
bool valid;
|
|
|
|
/** The sequence number of the instruction. */
|
|
InstSeqNum seqNum;
|
|
|
|
/** How many source registers are ready. */
|
|
unsigned readyRegs;
|
|
|
|
/** Can this instruction issue. */
|
|
bool canIssue;
|
|
|
|
/** Has this instruction issued. */
|
|
bool issued;
|
|
|
|
/** Has this instruction executed (or made it through execute) yet. */
|
|
bool executed;
|
|
|
|
/** Can this instruction commit. */
|
|
bool canCommit;
|
|
|
|
/** Is this instruction squashed. */
|
|
bool squashed;
|
|
|
|
/** Is this instruction squashed in the instruction queue. */
|
|
bool squashedInIQ;
|
|
|
|
/** Is this a recover instruction. */
|
|
bool recoverInst;
|
|
|
|
/** Is this a thread blocking instruction. */
|
|
bool blockingInst; /* this inst has called thread_block() */
|
|
|
|
/** Is this a thread syncrhonization instruction. */
|
|
bool threadsyncWait;
|
|
|
|
/** If the BTB missed. */
|
|
bool btbMissed;
|
|
|
|
/** The thread this instruction is from. */
|
|
short threadNumber;
|
|
|
|
/** If instruction is speculative. */
|
|
short specMode;
|
|
|
|
/** data address space ID, for loads & stores. */
|
|
short asid;
|
|
|
|
/** Pointer to the FullCPU object. */
|
|
FullCPU *cpu;
|
|
|
|
/** Pointer to the exec context. Will not exist in the final version. */
|
|
ExecContext *xc;
|
|
|
|
/** The kind of fault this instruction has generated. */
|
|
Fault fault;
|
|
|
|
/** The effective virtual address (lds & stores only). */
|
|
Addr effAddr;
|
|
|
|
/** The effective physical address. */
|
|
Addr physEffAddr;
|
|
|
|
/** Effective virtual address for a copy source. */
|
|
Addr copySrcEffAddr;
|
|
|
|
/** Effective physical address for a copy source. */
|
|
Addr copySrcPhysEffAddr;
|
|
|
|
/** The memory request flags (from translation). */
|
|
unsigned memReqFlags;
|
|
|
|
/** The size of the data to be stored. */
|
|
int storeSize;
|
|
|
|
/** The data to be stored. */
|
|
IntReg storeData;
|
|
|
|
/** Result of this instruction, if an integer. */
|
|
uint64_t intResult;
|
|
|
|
/** Result of this instruction, if a float. */
|
|
float floatResult;
|
|
|
|
/** Result of this instruction, if a double. */
|
|
double doubleResult;
|
|
|
|
/** PC of this instruction. */
|
|
Addr PC;
|
|
|
|
/** Next non-speculative PC. It is not filled in at fetch, but rather
|
|
* once the target of the branch is truly known (either decode or
|
|
* execute).
|
|
*/
|
|
Addr nextPC;
|
|
|
|
/** Predicted next PC. */
|
|
Addr predPC;
|
|
|
|
/** Count of total number of dynamic instructions. */
|
|
static int instcount;
|
|
|
|
/** Did this instruction do a spec write? */
|
|
bool specMemWrite;
|
|
|
|
private:
|
|
/** Physical register index of the destination registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _destRegIdx[MaxInstDestRegs];
|
|
|
|
/** Physical register index of the source registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _srcRegIdx[MaxInstSrcRegs];
|
|
|
|
/** Whether or not the source register is ready. */
|
|
bool _readySrcRegIdx[MaxInstSrcRegs];
|
|
|
|
/** Physical register index of the previous producers of the
|
|
* architected destinations.
|
|
*/
|
|
PhysRegIndex _prevDestRegIdx[MaxInstDestRegs];
|
|
|
|
public:
|
|
/** BaseDynInst constructor given a binary instruction. */
|
|
BaseDynInst(MachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num,
|
|
FullCPU *cpu);
|
|
|
|
/** BaseDynInst constructor given a static inst pointer. */
|
|
BaseDynInst(StaticInstPtr<ISA> &_staticInst);
|
|
|
|
/** BaseDynInst destructor. */
|
|
~BaseDynInst();
|
|
|
|
#if 0
|
|
Fault
|
|
mem_access(MemCmd cmd, // Read or Write access cmd
|
|
Addr addr, // virtual address of access
|
|
void *p, // input/output buffer
|
|
int nbytes); // access size
|
|
#endif
|
|
|
|
void
|
|
trace_mem(Fault fault, // last fault
|
|
MemCmd cmd, // last command
|
|
Addr addr, // virtual address of access
|
|
void *p, // memory accessed
|
|
int nbytes); // access size
|
|
|
|
/** Dumps out contents of this BaseDynInst. */
|
|
void dump();
|
|
|
|
/** Dumps out contents of this BaseDynInst into given string. */
|
|
void dump(std::string &outstring);
|
|
|
|
/** Returns the fault type. */
|
|
Fault getFault() { return fault; }
|
|
|
|
/** Checks whether or not this instruction has had its branch target
|
|
* calculated yet. For now it is not utilized and is hacked to be
|
|
* always false.
|
|
*/
|
|
bool doneTargCalc() { return false; }
|
|
|
|
/** Returns the calculated target of the branch. */
|
|
Addr readCalcTarg() { return nextPC; }
|
|
|
|
Addr readNextPC() { return nextPC; }
|
|
|
|
/** Set the predicted target of this current instruction. */
|
|
void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
|
|
|
|
/** Returns the predicted target of the branch. */
|
|
Addr readPredTarg() { return predPC; }
|
|
|
|
/** Returns whether the instruction was predicted taken or not. */
|
|
bool predTaken() {
|
|
// DPRINTF(FullCPU, "PC: %08p\n", PC);
|
|
// DPRINTF(FullCPU, "predPC: %08p\n", predPC);
|
|
|
|
return( predPC != (PC + sizeof(MachInst) ) );
|
|
}
|
|
|
|
/** Returns whether the instruction mispredicted. */
|
|
bool mispredicted() { return (predPC != nextPC); }
|
|
|
|
//
|
|
// Instruction types. Forward checks to StaticInst object.
|
|
//
|
|
bool isNop() const { return staticInst->isNop(); }
|
|
bool isMemRef() const { return staticInst->isMemRef(); }
|
|
bool isLoad() const { return staticInst->isLoad(); }
|
|
bool isStore() const { return staticInst->isStore(); }
|
|
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
|
|
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
|
|
bool isCopy() const { return staticInst->isCopy(); }
|
|
bool isInteger() const { return staticInst->isInteger(); }
|
|
bool isFloating() const { return staticInst->isFloating(); }
|
|
bool isControl() const { return staticInst->isControl(); }
|
|
bool isCall() const { return staticInst->isCall(); }
|
|
bool isReturn() const { return staticInst->isReturn(); }
|
|
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
|
|
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
|
|
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
|
|
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
|
|
bool isThreadSync() const { return staticInst->isThreadSync(); }
|
|
bool isSerializing() const { return staticInst->isSerializing(); }
|
|
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
|
|
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
|
|
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
|
|
|
|
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
|
|
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
|
|
|
|
// the following are used to track physical register usage
|
|
// for machines with separate int & FP reg files
|
|
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
|
|
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
|
|
|
|
/** Returns the logical register index of the i'th destination register. */
|
|
RegIndex destRegIdx(int i) const
|
|
{
|
|
return staticInst->destRegIdx(i);
|
|
}
|
|
|
|
/** Returns the logical register index of the i'th source register. */
|
|
RegIndex srcRegIdx(int i) const
|
|
{
|
|
return staticInst->srcRegIdx(i);
|
|
}
|
|
|
|
/** Returns the physical register index of the i'th destination
|
|
* register.
|
|
*/
|
|
PhysRegIndex renamedDestRegIdx(int idx) const
|
|
{
|
|
return _destRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the i'th source register. */
|
|
PhysRegIndex renamedSrcRegIdx(int idx) const
|
|
{
|
|
return _srcRegIdx[idx];
|
|
}
|
|
|
|
bool isReadySrcRegIdx(int idx) const
|
|
{
|
|
return _readySrcRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the previous physical register
|
|
* that remapped to the same logical register index.
|
|
*/
|
|
PhysRegIndex prevDestRegIdx(int idx) const
|
|
{
|
|
return _prevDestRegIdx[idx];
|
|
}
|
|
|
|
/** Renames a destination register to a physical register. Also records
|
|
* the previous physical register that the logical register mapped to.
|
|
*/
|
|
void renameDestReg(int idx,
|
|
PhysRegIndex renamed_dest,
|
|
PhysRegIndex previous_rename)
|
|
{
|
|
_destRegIdx[idx] = renamed_dest;
|
|
_prevDestRegIdx[idx] = previous_rename;
|
|
}
|
|
|
|
/** Renames a source logical register to the physical register which
|
|
* has/will produce that logical register's result.
|
|
* @todo: add in whether or not the source register is ready.
|
|
*/
|
|
void renameSrcReg(int idx, PhysRegIndex renamed_src)
|
|
{
|
|
_srcRegIdx[idx] = renamed_src;
|
|
}
|
|
|
|
//Push to .cc file.
|
|
/** Records that one of the source registers is ready. */
|
|
void markSrcRegReady()
|
|
{
|
|
++readyRegs;
|
|
if(readyRegs == numSrcRegs()) {
|
|
canIssue = true;
|
|
}
|
|
}
|
|
|
|
void markSrcRegReady(RegIndex src_idx)
|
|
{
|
|
++readyRegs;
|
|
|
|
_readySrcRegIdx[src_idx] = 1;
|
|
|
|
if(readyRegs == numSrcRegs()) {
|
|
canIssue = true;
|
|
}
|
|
}
|
|
|
|
/** Sets this instruction as ready to issue. */
|
|
void setCanIssue() { canIssue = true; }
|
|
|
|
/** Returns whether or not this instruction is ready to issue. */
|
|
bool readyToIssue() const { return canIssue; }
|
|
|
|
/** Sets this instruction as issued from the IQ. */
|
|
void setIssued() { issued = true; }
|
|
|
|
/** Returns whether or not this instruction has issued. */
|
|
bool isIssued() { return issued; }
|
|
|
|
/** Sets this instruction as executed. */
|
|
void setExecuted() { executed = true; }
|
|
|
|
/** Returns whether or not this instruction has executed. */
|
|
bool isExecuted() { return executed; }
|
|
|
|
/** Sets this instruction as ready to commit. */
|
|
void setCanCommit() { canCommit = true; }
|
|
|
|
/** Returns whether or not this instruction is ready to commit. */
|
|
bool readyToCommit() const { return canCommit; }
|
|
|
|
/** Sets this instruction as squashed. */
|
|
void setSquashed() { squashed = true; }
|
|
|
|
/** Returns whether or not this instruction is squashed. */
|
|
bool isSquashed() const { return squashed; }
|
|
|
|
/** Sets this instruction as squashed in the IQ. */
|
|
void setSquashedInIQ() { squashedInIQ = true; }
|
|
|
|
/** Returns whether or not this instruction is squashed in the IQ. */
|
|
bool isSquashedInIQ() { return squashedInIQ; }
|
|
|
|
/** Returns the opclass of this instruction. */
|
|
OpClass opClass() const { return staticInst->opClass(); }
|
|
|
|
/** Returns whether or not the BTB missed. */
|
|
bool btbMiss() const { return btbMissed; }
|
|
|
|
/** Returns the branch target address. */
|
|
Addr branchTarget() const { return staticInst->branchTarget(PC); }
|
|
|
|
// The register accessor methods provide the index of the
|
|
// instruction's operand (e.g., 0 or 1), not the architectural
|
|
// register index, to simplify the implementation of register
|
|
// renaming. We find the architectural register index by indexing
|
|
// into the instruction's own operand index table. Note that a
|
|
// raw pointer to the StaticInst is provided instead of a
|
|
// ref-counted StaticInstPtr to redice overhead. This is fine as
|
|
// long as these methods don't copy the pointer into any long-term
|
|
// storage (which is pretty hard to imagine they would have reason
|
|
// to do).
|
|
|
|
uint64_t readIntReg(StaticInst<ISA> *si, int idx)
|
|
{
|
|
return cpu->readIntReg(_srcRegIdx[idx]);
|
|
}
|
|
|
|
float readFloatRegSingle(StaticInst<ISA> *si, int idx)
|
|
{
|
|
return cpu->readFloatRegSingle(_srcRegIdx[idx]);
|
|
}
|
|
|
|
double readFloatRegDouble(StaticInst<ISA> *si, int idx)
|
|
{
|
|
return cpu->readFloatRegDouble(_srcRegIdx[idx]);
|
|
}
|
|
|
|
uint64_t readFloatRegInt(StaticInst<ISA> *si, int idx)
|
|
{
|
|
return cpu->readFloatRegInt(_srcRegIdx[idx]);
|
|
}
|
|
/** @todo: Make results into arrays so they can handle multiple dest
|
|
* registers.
|
|
*/
|
|
void setIntReg(StaticInst<ISA> *si, int idx, uint64_t val)
|
|
{
|
|
cpu->setIntReg(_destRegIdx[idx], val);
|
|
intResult = val;
|
|
}
|
|
|
|
void setFloatRegSingle(StaticInst<ISA> *si, int idx, float val)
|
|
{
|
|
cpu->setFloatRegSingle(_destRegIdx[idx], val);
|
|
floatResult = val;
|
|
}
|
|
|
|
void setFloatRegDouble(StaticInst<ISA> *si, int idx, double val)
|
|
{
|
|
cpu->setFloatRegDouble(_destRegIdx[idx], val);
|
|
doubleResult = val;
|
|
}
|
|
|
|
void setFloatRegInt(StaticInst<ISA> *si, int idx, uint64_t val)
|
|
{
|
|
cpu->setFloatRegInt(_destRegIdx[idx], val);
|
|
intResult = val;
|
|
}
|
|
|
|
/** Read the PC of this instruction. */
|
|
Addr readPC() { return PC; }
|
|
|
|
/** Set the next PC of this instruction (its actual target). */
|
|
void setNextPC(uint64_t val) { nextPC = val; }
|
|
|
|
// bool misspeculating() { return cpu->misspeculating(); }
|
|
ExecContext *xcBase() { return xc; }
|
|
};
|
|
|
|
template<class Impl>
|
|
template<class T>
|
|
inline Fault
|
|
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
|
|
{
|
|
MemReqPtr req = new MemReq(addr, xc, sizeof(T), flags);
|
|
req->asid = asid;
|
|
|
|
fault = cpu->translateDataReadReq(req);
|
|
|
|
// Record key MemReq parameters so we can generate another one
|
|
// just like it for the timing access without calling translate()
|
|
// again (which might mess up the TLB).
|
|
effAddr = req->vaddr;
|
|
physEffAddr = req->paddr;
|
|
memReqFlags = req->flags;
|
|
|
|
/**
|
|
* @todo
|
|
* Replace the disjoint functional memory with a unified one and remove
|
|
* this hack.
|
|
*/
|
|
#ifndef FULL_SYSTEM
|
|
req->paddr = req->vaddr;
|
|
#endif
|
|
|
|
if (fault == No_Fault) {
|
|
fault = cpu->read(req, data);
|
|
}
|
|
else {
|
|
// Return a fixed value to keep simulation deterministic even
|
|
// along misspeculated paths.
|
|
data = (T)-1;
|
|
}
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
|
|
template<class Impl>
|
|
template<class T>
|
|
inline Fault
|
|
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
storeSize = sizeof(T);
|
|
storeData = data;
|
|
if (specMode)
|
|
specMemWrite = true;
|
|
|
|
MemReqPtr req = new MemReq(addr, xc, sizeof(T), flags);
|
|
|
|
req->asid = asid;
|
|
|
|
fault = cpu->translateDataWriteReq(req);
|
|
|
|
// Record key MemReq parameters so we can generate another one
|
|
// just like it for the timing access without calling translate()
|
|
// again (which might mess up the TLB).
|
|
effAddr = req->vaddr;
|
|
physEffAddr = req->paddr;
|
|
memReqFlags = req->flags;
|
|
|
|
/**
|
|
* @todo
|
|
* Replace the disjoint functional memory with a unified one and remove
|
|
* this hack.
|
|
*/
|
|
#ifndef FULL_SYSTEM
|
|
req->paddr = req->vaddr;
|
|
#endif
|
|
|
|
if (fault == No_Fault) {
|
|
fault = cpu->write(req, data);
|
|
}
|
|
|
|
if (res) {
|
|
// always return some result to keep misspeculated paths
|
|
// (which will ignore faults) deterministic
|
|
*res = (fault == No_Fault) ? req->result : 0;
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
|
|
#endif // __DYN_INST_HH__
|