gem5/dev/ide_ctrl.cc
Ali Saidi 9892bdb342 ide printing to match newmem
--HG--
extra : convert_revision : ca6665bd93d257a8cf9d43600828ac22998c5810
2006-05-11 17:18:19 -04:00

814 lines
24 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstddef>
#include <cstdlib>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "cpu/intr_control.hh"
#include "dev/ide_ctrl.hh"
#include "dev/ide_disk.hh"
#include "dev/pciconfigall.hh"
#include "dev/pcireg.h"
#include "dev/platform.hh"
#include "mem/packet.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
#include "sim/byteswap.hh"
using namespace std;
////
// Initialization and destruction
////
IdeController::IdeController(Params *p)
: PciDev(p)
{
// initialize the PIO interface addresses
pri_cmd_addr = 0;
pri_cmd_size = BARSize[0];
pri_ctrl_addr = 0;
pri_ctrl_size = BARSize[1];
sec_cmd_addr = 0;
sec_cmd_size = BARSize[2];
sec_ctrl_addr = 0;
sec_ctrl_size = BARSize[3];
// initialize the bus master interface (BMI) address to be configured
// via PCI
bmi_addr = 0;
bmi_size = BARSize[4];
// zero out all of the registers
memset(bmi_regs.data, 0, sizeof(bmi_regs));
memset(config_regs.data, 0, sizeof(config_regs.data));
// setup initial values
// enable both channels
config_regs.idetim0 = htole((uint16_t)IDETIM_DECODE_EN);
config_regs.idetim1 = htole((uint16_t)IDETIM_DECODE_EN);
bmi_regs.bmis0 = DMA1CAP | DMA0CAP;
bmi_regs.bmis1 = DMA1CAP | DMA0CAP;
// reset all internal variables
io_enabled = false;
bm_enabled = false;
memset(cmd_in_progress, 0, sizeof(cmd_in_progress));
// setup the disks attached to controller
memset(disks, 0, sizeof(disks));
dev[0] = 0;
dev[1] = 0;
if (params()->disks.size() > 3)
panic("IDE controllers support a maximum of 4 devices attached!\n");
for (int i = 0; i < params()->disks.size(); i++) {
disks[i] = params()->disks[i];
disks[i]->setController(this);
}
}
IdeController::~IdeController()
{
for (int i = 0; i < 4; i++)
if (disks[i])
delete disks[i];
}
////
// Utility functions
///
void
IdeController::parseAddr(const Addr &addr, Addr &offset, IdeChannel &channel,
IdeRegType &reg_type)
{
offset = addr;
if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) {
offset -= pri_cmd_addr;
reg_type = COMMAND_BLOCK;
channel = PRIMARY;
} else if (addr >= pri_ctrl_addr &&
addr < (pri_ctrl_addr + pri_ctrl_size)) {
offset -= pri_ctrl_addr;
reg_type = CONTROL_BLOCK;
channel = PRIMARY;
} else if (addr >= sec_cmd_addr &&
addr < (sec_cmd_addr + sec_cmd_size)) {
offset -= sec_cmd_addr;
reg_type = COMMAND_BLOCK;
channel = SECONDARY;
} else if (addr >= sec_ctrl_addr &&
addr < (sec_ctrl_addr + sec_ctrl_size)) {
offset -= sec_ctrl_addr;
reg_type = CONTROL_BLOCK;
channel = SECONDARY;
} else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) {
offset -= bmi_addr;
reg_type = BMI_BLOCK;
channel = (offset < BMIC1) ? PRIMARY : SECONDARY;
} else {
panic("IDE controller access to invalid address: %#x\n", addr);
}
}
int
IdeController::getDisk(IdeChannel channel)
{
int disk = 0;
uint8_t *devBit = &dev[0];
if (channel == SECONDARY) {
disk += 2;
devBit = &dev[1];
}
disk += *devBit;
assert(*devBit == 0 || *devBit == 1);
return disk;
}
int
IdeController::getDisk(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i])
return i;
}
return -1;
}
bool
IdeController::isDiskSelected(IdeDisk *diskPtr)
{
for (int i = 0; i < 4; i++) {
if ((long)diskPtr == (long)disks[i]) {
// is disk is on primary or secondary channel
int channel = i/2;
// is disk the master or slave
int devID = i%2;
return (dev[channel] == devID);
}
}
panic("Unable to find disk by pointer!!\n");
}
////
// Command completion
////
void
IdeController::setDmaComplete(IdeDisk *disk)
{
int diskNum = getDisk(disk);
if (diskNum < 0)
panic("Unable to find disk based on pointer %#x\n", disk);
if (diskNum < 2) {
// clear the start/stop bit in the command register
bmi_regs.bmic0 &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs.bmis0 &= ~BMIDEA;
// set the interrupt bit
bmi_regs.bmis0 |= IDEINTS;
} else {
// clear the start/stop bit in the command register
bmi_regs.bmic1 &= ~SSBM;
// clear the bus master active bit in the status register
bmi_regs.bmis1 &= ~BMIDEA;
// set the interrupt bit
bmi_regs.bmis1 |= IDEINTS;
}
}
////
// Read and write handling
////
void
IdeController::readConfig(int offset, uint8_t *data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::readConfig(offset, data);
} else if (offset >= IDE_CTRL_CONF_START &&
(offset + 1) <= IDE_CTRL_CONF_END) {
switch (offset) {
case IDE_CTRL_CONF_DEV_TIMING:
*data = config_regs.sidetim;
break;
case IDE_CTRL_CONF_UDMA_CNTRL:
*data = config_regs.udmactl;
break;
case IDE_CTRL_CONF_PRIM_TIMING+1:
*data = htole(config_regs.idetim0) >> 8;
break;
case IDE_CTRL_CONF_SEC_TIMING+1:
*data = htole(config_regs.idetim1) >> 8;
break;
case IDE_CTRL_CONF_IDE_CONFIG:
*data = htole(config_regs.ideconfig) & 0xFF;
break;
case IDE_CTRL_CONF_IDE_CONFIG+1:
*data = htole(config_regs.ideconfig) >> 8;
break;
default:
panic("Invalid PCI configuration read for size 1 at offset: %#x!\n",
offset);
}
} else {
panic("Read of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 1 data: %#x\n",
offset, (uint32_t)*data);
}
void
IdeController::readConfig(int offset, uint16_t *data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::readConfig(offset, data);
} else if (offset >= IDE_CTRL_CONF_START &&
(offset + 2) <= IDE_CTRL_CONF_END) {
switch (offset) {
case IDE_CTRL_CONF_PRIM_TIMING:
*data = config_regs.idetim0;
break;
case IDE_CTRL_CONF_SEC_TIMING:
*data = config_regs.idetim1;
break;
case IDE_CTRL_CONF_UDMA_TIMING:
*data = config_regs.udmatim;
break;
case IDE_CTRL_CONF_IDE_CONFIG:
*data = config_regs.ideconfig;
break;
default:
panic("Invalid PCI configuration read for size 2 offset: %#x!\n",
offset);
}
} else {
panic("Read of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 2 data: %#x\n", offset, *data);
}
void
IdeController::readConfig(int offset, uint32_t *data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::readConfig(offset, data);
} else {
panic("Read of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI read offset: %#x size: 4 data: %#x\n", offset, *data);
}
void
IdeController::writeConfig(int offset, const uint8_t data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::writeConfig(offset, data);
} else if (offset >= IDE_CTRL_CONF_START &&
(offset + 1) <= IDE_CTRL_CONF_END) {
switch (offset) {
case IDE_CTRL_CONF_DEV_TIMING:
config_regs.sidetim = data;
break;
case IDE_CTRL_CONF_UDMA_CNTRL:
config_regs.udmactl = data;
break;
case IDE_CTRL_CONF_IDE_CONFIG:
config_regs.ideconfig = (config_regs.ideconfig & 0xFF00) | (data);
break;
case IDE_CTRL_CONF_IDE_CONFIG+1:
config_regs.ideconfig = (config_regs.ideconfig & 0x00FF) | data << 8;
break;
default:
panic("Invalid PCI configuration write for size 1 offset: %#x!\n",
offset);
}
} else {
panic("Read of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI write offset: %#x size: 1 data: %#x\n",
offset, (uint32_t)data);
}
void
IdeController::writeConfig(int offset, const uint16_t data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::writeConfig(offset, data);
} else if (offset >= IDE_CTRL_CONF_START &&
(offset + 2) <= IDE_CTRL_CONF_END) {
switch (offset) {
case IDE_CTRL_CONF_PRIM_TIMING:
config_regs.idetim0 = data;
break;
case IDE_CTRL_CONF_SEC_TIMING:
config_regs.idetim1 = data;
break;
case IDE_CTRL_CONF_UDMA_TIMING:
config_regs.udmatim = data;
break;
case IDE_CTRL_CONF_IDE_CONFIG:
config_regs.ideconfig = data;
break;
default:
panic("Invalid PCI configuration write for size 2 offset: %#x!\n",
offset);
}
} else {
panic("Write of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI write offset: %#x size: 2 data: %#x\n", offset, data);
/* Trap command register writes and enable IO/BM as appropriate. */
if (offset == PCI_COMMAND) {
if (letoh(config.command) & PCI_CMD_IOSE)
io_enabled = true;
else
io_enabled = false;
if (letoh(config.command) & PCI_CMD_BME)
bm_enabled = true;
else
bm_enabled = false;
}
}
void
IdeController::writeConfig(int offset, const uint32_t data)
{
if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::writeConfig(offset, data);
} else {
panic("Read of unimplemented PCI config. register: %x\n", offset);
}
DPRINTF(IdeCtrl, "PCI write offset: %#x size: 4 data: %#x\n", offset, data);
switch(offset) {
case PCI0_BASE_ADDR0:
if (BARAddrs[0] != 0)
pri_cmd_addr = BARAddrs[0];
break;
case PCI0_BASE_ADDR1:
if (BARAddrs[1] != 0)
pri_ctrl_addr = BARAddrs[1];
break;
case PCI0_BASE_ADDR2:
if (BARAddrs[2] != 0)
sec_cmd_addr = BARAddrs[2];
break;
case PCI0_BASE_ADDR3:
if (BARAddrs[3] != 0)
sec_ctrl_addr = BARAddrs[3];
break;
case PCI0_BASE_ADDR4:
if (BARAddrs[4] != 0)
bmi_addr = BARAddrs[4];
break;
}
}
Tick
IdeController::read(Packet &pkt)
{
Addr offset;
IdeChannel channel;
IdeRegType reg_type;
int disk;
pkt.time += pioDelay;
pkt.allocate();
if (pkt.size != 1 && pkt.size != 2 && pkt.size !=4)
panic("Bad IDE read size: %d\n", pkt.size);
parseAddr(pkt.addr, offset, channel, reg_type);
if (!io_enabled) {
pkt.result = Success;
return pioDelay;
}
switch (reg_type) {
case BMI_BLOCK:
switch (pkt.size) {
case sizeof(uint8_t):
pkt.set(bmi_regs.data[offset]);
break;
case sizeof(uint16_t):
pkt.set(*(uint16_t*)&bmi_regs.data[offset]);
break;
case sizeof(uint32_t):
pkt.set(*(uint32_t*)&bmi_regs.data[offset]);
break;
default:
panic("IDE read of BMI reg invalid size: %#x\n", pkt.size);
}
break;
case COMMAND_BLOCK:
case CONTROL_BLOCK:
disk = getDisk(channel);
if (disks[disk] == NULL) {
pkt.set<uint8_t>(0);
break;
}
switch (offset) {
case DATA_OFFSET:
switch (pkt.size) {
case sizeof(uint16_t):
disks[disk]->read(offset, reg_type, pkt.getPtr<uint8_t>());
break;
case sizeof(uint32_t):
disks[disk]->read(offset, reg_type, pkt.getPtr<uint8_t>());
disks[disk]->read(offset, reg_type,
pkt.getPtr<uint8_t>() + sizeof(uint16_t));
break;
default:
panic("IDE read of data reg invalid size: %#x\n", pkt.size);
}
break;
default:
if (pkt.size == sizeof(uint8_t)) {
disks[disk]->read(offset, reg_type, pkt.getPtr<uint8_t>());
} else
panic("IDE read of command reg of invalid size: %#x\n", pkt.size);
}
break;
default:
panic("IDE controller read of unknown register block type!\n");
}
if (pkt.size == 1)
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt.size, (uint32_t)pkt.get<uint8_t>());
else if (pkt.size == 2)
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt.size, pkt.get<uint16_t>());
else
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, pkt.size, pkt.get<uint32_t>());
pkt.result = Success;
return pioDelay;
}
Tick
IdeController::write(Packet &pkt)
{
Addr offset;
IdeChannel channel;
IdeRegType reg_type;
int disk;
uint8_t oldVal, newVal;
pkt.time += pioDelay;
parseAddr(pkt.addr, offset, channel, reg_type);
if (!io_enabled) {
pkt.result = Success;
DPRINTF(IdeCtrl, "io not enabled\n");
return pioDelay;
}
switch (reg_type) {
case BMI_BLOCK:
if (!bm_enabled) {
pkt.result = Success;
return pioDelay;
}
switch (offset) {
// Bus master IDE command register
case BMIC1:
case BMIC0:
if (pkt.size != sizeof(uint8_t))
panic("Invalid BMIC write size: %x\n", pkt.size);
// select the current disk based on DEV bit
disk = getDisk(channel);
oldVal = bmi_regs.chan[channel].bmic;
newVal = pkt.get<uint8_t>();
// if a DMA transfer is in progress, R/W control cannot change
if (oldVal & SSBM) {
if ((oldVal & RWCON) ^ (newVal & RWCON)) {
(oldVal & RWCON) ? newVal |= RWCON : newVal &= ~RWCON;
}
}
// see if the start/stop bit is being changed
if ((oldVal & SSBM) ^ (newVal & SSBM)) {
if (oldVal & SSBM) {
// stopping DMA transfer
DPRINTF(IdeCtrl, "Stopping DMA transfer\n");
// clear the BMIDEA bit
bmi_regs.chan[channel].bmis =
bmi_regs.chan[channel].bmis & ~BMIDEA;
if (disks[disk] == NULL)
panic("DMA stop for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer abort
disks[disk]->abortDma();
} else {
// starting DMA transfer
DPRINTF(IdeCtrl, "Starting DMA transfer\n");
// set the BMIDEA bit
bmi_regs.chan[channel].bmis =
bmi_regs.chan[channel].bmis | BMIDEA;
if (disks[disk] == NULL)
panic("DMA start for disk %d which does not exist\n",
disk);
// inform the disk of the DMA transfer start
disks[disk]->startDma(letoh(bmi_regs.chan[channel].bmidtp));
}
}
// update the register value
bmi_regs.chan[channel].bmic = newVal;
break;
// Bus master IDE status register
case BMIS0:
case BMIS1:
if (pkt.size != sizeof(uint8_t))
panic("Invalid BMIS write size: %x\n", pkt.size);
oldVal = bmi_regs.chan[channel].bmis;
newVal = pkt.get<uint8_t>();
// the BMIDEA bit is RO
newVal |= (oldVal & BMIDEA);
// to reset (set 0) IDEINTS and IDEDMAE, write 1 to each
if ((oldVal & IDEINTS) && (newVal & IDEINTS))
newVal &= ~IDEINTS; // clear the interrupt?
else
(oldVal & IDEINTS) ? newVal |= IDEINTS : newVal &= ~IDEINTS;
if ((oldVal & IDEDMAE) && (newVal & IDEDMAE))
newVal &= ~IDEDMAE;
else
(oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE;
bmi_regs.chan[channel].bmis = newVal;
break;
// Bus master IDE descriptor table pointer register
case BMIDTP0:
case BMIDTP1:
{
if (pkt.size != sizeof(uint32_t))
panic("Invalid BMIDTP write size: %x\n", pkt.size);
bmi_regs.chan[channel].bmidtp = htole(pkt.get<uint32_t>() & ~0x3);
}
break;
default:
if (pkt.size != sizeof(uint8_t) &&
pkt.size != sizeof(uint16_t) &&
pkt.size != sizeof(uint32_t))
panic("IDE controller write of invalid write size: %x\n",
pkt.size);
// do a default copy of data into the registers
memcpy(&bmi_regs.data[offset], pkt.getPtr<uint8_t>(), pkt.size);
}
break;
case COMMAND_BLOCK:
if (offset == IDE_SELECT_OFFSET) {
uint8_t *devBit = &dev[channel];
*devBit = (letoh(pkt.get<uint8_t>()) & IDE_SELECT_DEV_BIT) ? 1 : 0;
}
// fall-through ok!
case CONTROL_BLOCK:
disk = getDisk(channel);
if (disks[disk] == NULL)
break;
switch (offset) {
case DATA_OFFSET:
switch (pkt.size) {
case sizeof(uint16_t):
disks[disk]->write(offset, reg_type, pkt.getPtr<uint8_t>());
break;
case sizeof(uint32_t):
disks[disk]->write(offset, reg_type, pkt.getPtr<uint8_t>());
disks[disk]->write(offset, reg_type, pkt.getPtr<uint8_t>() +
sizeof(uint16_t));
break;
default:
panic("IDE write of data reg invalid size: %#x\n", pkt.size);
}
break;
default:
if (pkt.size == sizeof(uint8_t)) {
disks[disk]->write(offset, reg_type, pkt.getPtr<uint8_t>());
} else
panic("IDE write of command reg of invalid size: %#x\n", pkt.size);
}
break;
default:
panic("IDE controller write of unknown register block type!\n");
}
if (pkt.size == 1)
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt.size, (uint32_t)pkt.get<uint8_t>());
else if (pkt.size == 2)
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt.size, pkt.get<uint16_t>());
else
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, pkt.size, pkt.get<uint32_t>());
pkt.result = Success;
return pioDelay;
}
////
// Serialization
////
void
IdeController::serialize(std::ostream &os)
{
// Serialize the PciDev base class
PciDev::serialize(os);
// Serialize register addresses and sizes
SERIALIZE_SCALAR(pri_cmd_addr);
SERIALIZE_SCALAR(pri_cmd_size);
SERIALIZE_SCALAR(pri_ctrl_addr);
SERIALIZE_SCALAR(pri_ctrl_size);
SERIALIZE_SCALAR(sec_cmd_addr);
SERIALIZE_SCALAR(sec_cmd_size);
SERIALIZE_SCALAR(sec_ctrl_addr);
SERIALIZE_SCALAR(sec_ctrl_size);
SERIALIZE_SCALAR(bmi_addr);
SERIALIZE_SCALAR(bmi_size);
// Serialize registers
SERIALIZE_ARRAY(bmi_regs.data,
sizeof(bmi_regs.data) / sizeof(bmi_regs.data[0]));
SERIALIZE_ARRAY(dev, sizeof(dev) / sizeof(dev[0]));
SERIALIZE_ARRAY(config_regs.data,
sizeof(config_regs.data) / sizeof(config_regs.data[0]));
// Serialize internal state
SERIALIZE_SCALAR(io_enabled);
SERIALIZE_SCALAR(bm_enabled);
SERIALIZE_ARRAY(cmd_in_progress,
sizeof(cmd_in_progress) / sizeof(cmd_in_progress[0]));
}
void
IdeController::unserialize(Checkpoint *cp, const std::string &section)
{
// Unserialize the PciDev base class
PciDev::unserialize(cp, section);
// Unserialize register addresses and sizes
UNSERIALIZE_SCALAR(pri_cmd_addr);
UNSERIALIZE_SCALAR(pri_cmd_size);
UNSERIALIZE_SCALAR(pri_ctrl_addr);
UNSERIALIZE_SCALAR(pri_ctrl_size);
UNSERIALIZE_SCALAR(sec_cmd_addr);
UNSERIALIZE_SCALAR(sec_cmd_size);
UNSERIALIZE_SCALAR(sec_ctrl_addr);
UNSERIALIZE_SCALAR(sec_ctrl_size);
UNSERIALIZE_SCALAR(bmi_addr);
UNSERIALIZE_SCALAR(bmi_size);
// Unserialize registers
UNSERIALIZE_ARRAY(bmi_regs.data,
sizeof(bmi_regs.data) / sizeof(bmi_regs.data[0]));
UNSERIALIZE_ARRAY(dev, sizeof(dev) / sizeof(dev[0]));
UNSERIALIZE_ARRAY(config_regs.data,
sizeof(config_regs.data) / sizeof(config_regs.data[0]));
// Unserialize internal state
UNSERIALIZE_SCALAR(io_enabled);
UNSERIALIZE_SCALAR(bm_enabled);
UNSERIALIZE_ARRAY(cmd_in_progress,
sizeof(cmd_in_progress) / sizeof(cmd_in_progress[0]));
pioPort->sendStatusChange(Port::RangeChange);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeController)
SimObjectParam<System *> system;
SimObjectParam<Platform *> platform;
SimObjectParam<PciConfigAll *> configspace;
SimObjectParam<PciConfigData *> configdata;
Param<uint32_t> pci_bus;
Param<uint32_t> pci_dev;
Param<uint32_t> pci_func;
Param<Tick> pio_latency;
SimObjectVectorParam<IdeDisk *> disks;
END_DECLARE_SIM_OBJECT_PARAMS(IdeController)
BEGIN_INIT_SIM_OBJECT_PARAMS(IdeController)
INIT_PARAM(system, "System pointer"),
INIT_PARAM(platform, "Platform pointer"),
INIT_PARAM(configspace, "PCI Configspace"),
INIT_PARAM(configdata, "PCI Config data"),
INIT_PARAM(pci_bus, "PCI bus ID"),
INIT_PARAM(pci_dev, "PCI device number"),
INIT_PARAM(pci_func, "PCI function code"),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM(disks, "IDE disks attached to this controller")
END_INIT_SIM_OBJECT_PARAMS(IdeController)
CREATE_SIM_OBJECT(IdeController)
{
IdeController::Params *params = new IdeController::Params;
params->name = getInstanceName();
params->platform = platform;
params->system = system;
params->configSpace = configspace;
params->configData = configdata;
params->busNum = pci_bus;
params->deviceNum = pci_dev;
params->functionNum = pci_func;
params->pio_delay = pio_latency;
params->disks = disks;
return new IdeController(params);
}
REGISTER_SIM_OBJECT("IdeController", IdeController)
#endif //DOXYGEN_SHOULD_SKIP_THIS