gem5/cpu/o3/cpu.cc
Kevin Lim c4a87f874a Move activity tracking code into its own class. Now the CPU no longer has to keep track of the activity tracking internals; it just calls advance() on the class and uses it to tell if it should deschedule itself.
SConscript:
    Split off activity/idling code into its own class to do the processing separately.
cpu/o3/alpha_cpu_builder.cc:
cpu/o3/alpha_params.hh:
    Activity stuff.  This is mostly for debugging and may be removed later on (or changed to enable/disable activity idling).
cpu/o3/cpu.cc:
    Move activity idling stuff mostly into its own class, so it no longer clutters this file.
cpu/o3/cpu.hh:
    Move activity idling stuff into its own class.
python/m5/objects/AlphaFullCPU.py:
    Add parameter for initial activity value.

--HG--
extra : convert_revision : f32f7cc03895dc07ab57ddba78c5402a1a8b0f1a
2006-05-19 15:37:52 -04:00

1183 lines
30 KiB
C++

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config/full_system.hh"
#if FULL_SYSTEM
#include "sim/system.hh"
#else
#include "sim/process.hh"
#endif
#include "cpu/activity.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "cpu/o3/cpu.hh"
#include "sim/root.hh"
#include "sim/stat_control.hh"
using namespace std;
BaseFullCPU::BaseFullCPU(Params *params)
: BaseCPU(params), cpu_id(0)
{
}
void
BaseFullCPU::regStats()
{
BaseCPU::regStats();
}
template <class Impl>
FullO3CPU<Impl>::TickEvent::TickEvent(FullO3CPU<Impl> *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
template <class Impl>
void
FullO3CPU<Impl>::TickEvent::process()
{
cpu->tick();
}
template <class Impl>
const char *
FullO3CPU<Impl>::TickEvent::description()
{
return "FullO3CPU tick event";
}
template <class Impl>
FullO3CPU<Impl>::FullO3CPU(Params *params)
: BaseFullCPU(params),
tickEvent(this),
removeInstsThisCycle(false),
fetch(params),
decode(params),
rename(params),
iew(params),
commit(params),
regFile(params->numPhysIntRegs, params->numPhysFloatRegs),
freeList(params->numberOfThreads,//number of activeThreads
TheISA::NumIntRegs, params->numPhysIntRegs,
TheISA::NumFloatRegs, params->numPhysFloatRegs),
rob(params->numROBEntries, params->squashWidth,
params->smtROBPolicy, params->smtROBThreshold,
params->numberOfThreads),
scoreboard(params->numberOfThreads,//number of activeThreads
TheISA::NumIntRegs, params->numPhysIntRegs,
TheISA::NumFloatRegs, params->numPhysFloatRegs,
TheISA::NumMiscRegs * number_of_threads,
TheISA::ZeroReg),
// For now just have these time buffers be pretty big.
// @todo: Make these time buffer sizes parameters or derived
// from latencies
timeBuffer(5, 5),
fetchQueue(5, 5),
decodeQueue(5, 5),
renameQueue(5, 5),
iewQueue(5, 5),
activityRec(NumStages, 10, params->activity),
globalSeqNum(1),
#if FULL_SYSTEM
system(params->system),
memCtrl(system->memctrl),
physmem(system->physmem),
mem(params->mem),
#else
// pTable(params->pTable),
mem(params->workload[0]->getMemory()),
#endif // FULL_SYSTEM
switchCount(0),
icacheInterface(params->icacheInterface),
dcacheInterface(params->dcacheInterface),
deferRegistration(params->deferRegistration),
numThreads(number_of_threads)
{
_status = Idle;
if (params->checker) {
BaseCPU *temp_checker = params->checker;
checker = dynamic_cast<Checker<DynInstPtr> *>(temp_checker);
checker->setMemory(mem);
#if FULL_SYSTEM
checker->setSystem(params->system);
#endif
} else {
checker = NULL;
}
#if !FULL_SYSTEM
thread.resize(number_of_threads);
tids.resize(number_of_threads);
#endif
// The stages also need their CPU pointer setup. However this
// must be done at the upper level CPU because they have pointers
// to the upper level CPU, and not this FullO3CPU.
// Set up Pointers to the activeThreads list for each stage
fetch.setActiveThreads(&activeThreads);
decode.setActiveThreads(&activeThreads);
rename.setActiveThreads(&activeThreads);
iew.setActiveThreads(&activeThreads);
commit.setActiveThreads(&activeThreads);
// Give each of the stages the time buffer they will use.
fetch.setTimeBuffer(&timeBuffer);
decode.setTimeBuffer(&timeBuffer);
rename.setTimeBuffer(&timeBuffer);
iew.setTimeBuffer(&timeBuffer);
commit.setTimeBuffer(&timeBuffer);
// Also setup each of the stages' queues.
fetch.setFetchQueue(&fetchQueue);
decode.setFetchQueue(&fetchQueue);
commit.setFetchQueue(&fetchQueue);
decode.setDecodeQueue(&decodeQueue);
rename.setDecodeQueue(&decodeQueue);
rename.setRenameQueue(&renameQueue);
iew.setRenameQueue(&renameQueue);
iew.setIEWQueue(&iewQueue);
commit.setIEWQueue(&iewQueue);
commit.setRenameQueue(&renameQueue);
commit.setFetchStage(&fetch);
commit.setIEWStage(&iew);
rename.setIEWStage(&iew);
rename.setCommitStage(&commit);
#if !FULL_SYSTEM
int active_threads = params->workload.size();
#else
int active_threads = 1;
#endif
//Make Sure That this a Valid Architeture
assert(params->numPhysIntRegs >= numThreads * TheISA::NumIntRegs);
assert(params->numPhysFloatRegs >= numThreads * TheISA::NumFloatRegs);
rename.setScoreboard(&scoreboard);
iew.setScoreboard(&scoreboard);
// Setup the rename map for whichever stages need it.
PhysRegIndex lreg_idx = 0;
PhysRegIndex freg_idx = params->numPhysIntRegs; //Index to 1 after int regs
for (int tid=0; tid < numThreads; tid++) {
bool bindRegs = (tid <= active_threads - 1);
commitRenameMap[tid].init(TheISA::NumIntRegs,
params->numPhysIntRegs,
lreg_idx, //Index for Logical. Regs
TheISA::NumFloatRegs,
params->numPhysFloatRegs,
freg_idx, //Index for Float Regs
TheISA::NumMiscRegs,
TheISA::ZeroReg,
TheISA::ZeroReg,
tid,
false);
renameMap[tid].init(TheISA::NumIntRegs,
params->numPhysIntRegs,
lreg_idx, //Index for Logical. Regs
TheISA::NumFloatRegs,
params->numPhysFloatRegs,
freg_idx, //Index for Float Regs
TheISA::NumMiscRegs,
TheISA::ZeroReg,
TheISA::ZeroReg,
tid,
bindRegs);
}
rename.setRenameMap(renameMap);
commit.setRenameMap(commitRenameMap);
// Give renameMap & rename stage access to the freeList;
for (int i=0; i < numThreads; i++) {
renameMap[i].setFreeList(&freeList);
}
rename.setFreeList(&freeList);
// Setup the page table for whichever stages need it.
#if !FULL_SYSTEM
// fetch.setPageTable(pTable);
// iew.setPageTable(pTable);
#endif
// Setup the ROB for whichever stages need it.
commit.setROB(&rob);
lastRunningCycle = curTick;
contextSwitch = false;
}
template <class Impl>
FullO3CPU<Impl>::~FullO3CPU()
{
}
template <class Impl>
void
FullO3CPU<Impl>::fullCPURegStats()
{
BaseFullCPU::regStats();
// Register any of the FullCPU's stats here.
timesIdled
.name(name() + ".timesIdled")
.desc("Number of times that the entire CPU went into an idle state and"
" unscheduled itself")
.prereq(timesIdled);
idleCycles
.name(name() + ".idleCycles")
.desc("Total number of cycles that the CPU has spent unscheduled due "
"to idling")
.prereq(idleCycles);
// Number of Instructions simulated
// --------------------------------
// Should probably be in Base CPU but need templated
// MaxThreads so put in here instead
committedInsts
.init(numThreads)
.name(name() + ".committedInsts")
.desc("Number of Instructions Simulated");
totalCommittedInsts
.name(name() + ".committedInsts_total")
.desc("Number of Instructions Simulated");
cpi
.name(name() + ".cpi")
.desc("CPI: Cycles Per Instruction")
.precision(6);
cpi = simTicks / committedInsts;
totalCpi
.name(name() + ".cpi_total")
.desc("CPI: Total CPI of All Threads")
.precision(6);
totalCpi = simTicks / totalCommittedInsts;
ipc
.name(name() + ".ipc")
.desc("IPC: Instructions Per Cycle")
.precision(6);
ipc = committedInsts / simTicks;
totalIpc
.name(name() + ".ipc_total")
.desc("IPC: Total IPC of All Threads")
.precision(6);
totalIpc = totalCommittedInsts / simTicks;
}
template <class Impl>
void
FullO3CPU<Impl>::tick()
{
DPRINTF(FullCPU, "\n\nFullCPU: Ticking main, FullO3CPU.\n");
++numCycles;
// activity = false;
//Tick each of the stages
fetch.tick();
decode.tick();
rename.tick();
iew.tick();
commit.tick();
#if !FULL_SYSTEM
doContextSwitch();
#endif
// Now advance the time buffers
timeBuffer.advance();
fetchQueue.advance();
decodeQueue.advance();
renameQueue.advance();
iewQueue.advance();
activityRec.advance();
if (removeInstsThisCycle) {
cleanUpRemovedInsts();
}
if (!tickEvent.scheduled()) {
if (_status == SwitchedOut) {
// increment stat
lastRunningCycle = curTick;
} else if (!activityRec.active()) {
lastRunningCycle = curTick;
timesIdled++;
} else {
tickEvent.schedule(curTick + cycles(1));
}
}
#if !FULL_SYSTEM
updateThreadPriority();
#endif
}
template <class Impl>
void
FullO3CPU<Impl>::init()
{
if (!deferRegistration) {
registerExecContexts();
}
// Set inSyscall so that the CPU doesn't squash when initially
// setting up registers.
for (int i = 0; i < number_of_threads; ++i)
thread[i]->inSyscall = true;
for (int tid=0; tid < number_of_threads; tid++) {
#if FULL_SYSTEM
ExecContext *src_xc = execContexts[tid];
#else
ExecContext *src_xc = thread[tid]->getXCProxy();
#endif
// Threads start in the Suspended State
if (src_xc->status() != ExecContext::Suspended) {
continue;
}
#if FULL_SYSTEM
TheISA::initCPU(src_xc, src_xc->readCpuId());
#endif
}
// Clear inSyscall.
for (int i = 0; i < number_of_threads; ++i)
thread[i]->inSyscall = false;
// Initialize stages.
fetch.initStage();
iew.initStage();
rename.initStage();
commit.initStage();
commit.setThreads(thread);
}
template <class Impl>
void
FullO3CPU<Impl>::insertThread(unsigned tid)
{
DPRINTF(FullCPU,"[tid:%i] Initializing thread data");
// Will change now that the PC and thread state is internal to the CPU
// and not in the CPUExecContext.
#if 0
#if FULL_SYSTEM
ExecContext *src_xc = system->execContexts[tid];
#else
CPUExecContext *src_xc = thread[tid];
#endif
//Bind Int Regs to Rename Map
for (int ireg = 0; ireg < TheISA::NumIntRegs; ireg++) {
PhysRegIndex phys_reg = freeList.getIntReg();
renameMap[tid].setEntry(ireg,phys_reg);
scoreboard.setReg(phys_reg);
}
//Bind Float Regs to Rename Map
for (int freg = 0; freg < TheISA::NumFloatRegs; freg++) {
PhysRegIndex phys_reg = freeList.getFloatReg();
renameMap[tid].setEntry(freg,phys_reg);
scoreboard.setReg(phys_reg);
}
//Copy Thread Data Into RegFile
this->copyFromXC(tid);
//Set PC/NPC
regFile.pc[tid] = src_xc->readPC();
regFile.npc[tid] = src_xc->readNextPC();
src_xc->setStatus(ExecContext::Active);
activateContext(tid,1);
//Reset ROB/IQ/LSQ Entries
commit.rob->resetEntries();
iew.resetEntries();
#endif
}
template <class Impl>
void
FullO3CPU<Impl>::removeThread(unsigned tid)
{
DPRINTF(FullCPU,"[tid:%i] Removing thread data");
#if 0
//Unbind Int Regs from Rename Map
for (int ireg = 0; ireg < TheISA::NumIntRegs; ireg++) {
PhysRegIndex phys_reg = renameMap[tid].lookup(ireg);
scoreboard.unsetReg(phys_reg);
freeList.addReg(phys_reg);
}
//Unbind Float Regs from Rename Map
for (int freg = 0; freg < TheISA::NumFloatRegs; freg++) {
PhysRegIndex phys_reg = renameMap[tid].lookup(freg);
scoreboard.unsetReg(phys_reg);
freeList.addReg(phys_reg);
}
//Copy Thread Data From RegFile
/* Fix Me:
* Do we really need to do this if we are removing a thread
* in the sense that it's finished (exiting)? If the thread is just
* being suspended we might...
*/
// this->copyToXC(tid);
//Squash Throughout Pipeline
fetch.squash(0,tid);
decode.squash(tid);
rename.squash(tid);
assert(iew.ldstQueue.getCount(tid) == 0);
//Reset ROB/IQ/LSQ Entries
if (activeThreads.size() >= 1) {
commit.rob->resetEntries();
iew.resetEntries();
}
#endif
}
template <class Impl>
void
FullO3CPU<Impl>::activateWhenReady(int tid)
{
DPRINTF(FullCPU,"[tid:%i]: Checking if resources are available for incoming"
"(e.g. PhysRegs/ROB/IQ/LSQ) \n",
tid);
bool ready = true;
if (freeList.numFreeIntRegs() >= TheISA::NumIntRegs) {
DPRINTF(FullCPU,"[tid:%i] Suspending thread due to not enough "
"Phys. Int. Regs.\n",
tid);
ready = false;
} else if (freeList.numFreeFloatRegs() >= TheISA::NumFloatRegs) {
DPRINTF(FullCPU,"[tid:%i] Suspending thread due to not enough "
"Phys. Float. Regs.\n",
tid);
ready = false;
} else if (commit.rob->numFreeEntries() >=
commit.rob->entryAmount(activeThreads.size() + 1)) {
DPRINTF(FullCPU,"[tid:%i] Suspending thread due to not enough "
"ROB entries.\n",
tid);
ready = false;
} else if (iew.instQueue.numFreeEntries() >=
iew.instQueue.entryAmount(activeThreads.size() + 1)) {
DPRINTF(FullCPU,"[tid:%i] Suspending thread due to not enough "
"IQ entries.\n",
tid);
ready = false;
} else if (iew.ldstQueue.numFreeEntries() >=
iew.ldstQueue.entryAmount(activeThreads.size() + 1)) {
DPRINTF(FullCPU,"[tid:%i] Suspending thread due to not enough "
"LSQ entries.\n",
tid);
ready = false;
}
if (ready) {
insertThread(tid);
contextSwitch = false;
cpuWaitList.remove(tid);
} else {
suspendContext(tid);
//blocks fetch
contextSwitch = true;
//do waitlist
cpuWaitList.push_back(tid);
}
}
template <class Impl>
void
FullO3CPU<Impl>::activateContext(int tid, int delay)
{
// Needs to set each stage to running as well.
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive == activeThreads.end()) {
//May Need to Re-code this if the delay variable is the
//delay needed for thread to activate
DPRINTF(FullCPU, "Adding Thread %i to active threads list\n",
tid);
activeThreads.push_back(tid);
}
assert(_status == Idle || _status == SwitchedOut);
scheduleTickEvent(delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
fetch.wakeFromQuiesce();
_status = Running;
}
template <class Impl>
void
FullO3CPU<Impl>::suspendContext(int tid)
{
DPRINTF(FullCPU,"[tid: %i]: Suspended ...\n", tid);
unscheduleTickEvent();
_status = Idle;
/*
//Remove From Active List, if Active
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive != activeThreads.end()) {
DPRINTF(FullCPU,"[tid:%i]: Removing from active threads list\n",
tid);
activeThreads.erase(isActive);
}
*/
}
template <class Impl>
void
FullO3CPU<Impl>::deallocateContext(int tid)
{
DPRINTF(FullCPU,"[tid:%i]: Deallocating ...", tid);
/*
//Remove From Active List, if Active
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive != activeThreads.end()) {
DPRINTF(FullCPU,"[tid:%i]: Removing from active threads list\n",
tid);
activeThreads.erase(isActive);
removeThread(tid);
}
*/
}
template <class Impl>
void
FullO3CPU<Impl>::haltContext(int tid)
{
DPRINTF(FullCPU,"[tid:%i]: Halted ...", tid);
/*
//Remove From Active List, if Active
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive != activeThreads.end()) {
DPRINTF(FullCPU,"[tid:%i]: Removing from active threads list\n",
tid);
activeThreads.erase(isActive);
removeThread(tid);
}
*/
}
template <class Impl>
void
FullO3CPU<Impl>::switchOut(Sampler *_sampler)
{
sampler = _sampler;
switchCount = 0;
fetch.switchOut();
decode.switchOut();
rename.switchOut();
iew.switchOut();
commit.switchOut();
// Wake the CPU and record activity so everything can drain out if
// the CPU is currently idle.
wakeCPU();
activityRec.activity();
}
template <class Impl>
void
FullO3CPU<Impl>::signalSwitched()
{
if (++switchCount == NumStages) {
fetch.doSwitchOut();
rename.doSwitchOut();
commit.doSwitchOut();
instList.clear();
while (!removeList.empty()) {
removeList.pop();
}
if (checker)
checker->switchOut(sampler);
if (tickEvent.scheduled())
tickEvent.squash();
sampler->signalSwitched();
_status = SwitchedOut;
}
assert(switchCount <= 5);
}
template <class Impl>
void
FullO3CPU<Impl>::takeOverFrom(BaseCPU *oldCPU)
{
// Flush out any old data from the time buffers.
for (int i = 0; i < 10; ++i) {
timeBuffer.advance();
fetchQueue.advance();
decodeQueue.advance();
renameQueue.advance();
iewQueue.advance();
}
activityRec.reset();
BaseCPU::takeOverFrom(oldCPU);
fetch.takeOverFrom();
decode.takeOverFrom();
rename.takeOverFrom();
iew.takeOverFrom();
commit.takeOverFrom();
assert(!tickEvent.scheduled());
// @todo: Figure out how to properly select the tid to put onto
// the active threads list.
int tid = 0;
list<unsigned>::iterator isActive = find(
activeThreads.begin(), activeThreads.end(), tid);
if (isActive == activeThreads.end()) {
//May Need to Re-code this if the delay variable is the delay
//needed for thread to activate
DPRINTF(FullCPU, "Adding Thread %i to active threads list\n",
tid);
activeThreads.push_back(tid);
}
// Set all statuses to active, schedule the CPU's tick event.
// @todo: Fix up statuses so this is handled properly
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
}
}
if (!tickEvent.scheduled())
tickEvent.schedule(curTick);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readIntReg(int reg_idx)
{
return regFile.readIntReg(reg_idx);
}
template <class Impl>
float
FullO3CPU<Impl>::readFloatRegSingle(int reg_idx)
{
return regFile.readFloatRegSingle(reg_idx);
}
template <class Impl>
double
FullO3CPU<Impl>::readFloatRegDouble(int reg_idx)
{
return regFile.readFloatRegDouble(reg_idx);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readFloatRegInt(int reg_idx)
{
return regFile.readFloatRegInt(reg_idx);
}
template <class Impl>
void
FullO3CPU<Impl>::setIntReg(int reg_idx, uint64_t val)
{
regFile.setIntReg(reg_idx, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatRegSingle(int reg_idx, float val)
{
regFile.setFloatRegSingle(reg_idx, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatRegDouble(int reg_idx, double val)
{
regFile.setFloatRegDouble(reg_idx, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setFloatRegInt(int reg_idx, uint64_t val)
{
regFile.setFloatRegInt(reg_idx, val);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readArchIntReg(int reg_idx, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
return regFile.readIntReg(phys_reg);
}
template <class Impl>
float
FullO3CPU<Impl>::readArchFloatRegSingle(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatRegSingle(phys_reg);
}
template <class Impl>
double
FullO3CPU<Impl>::readArchFloatRegDouble(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatRegDouble(phys_reg);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readArchFloatRegInt(int reg_idx, unsigned tid)
{
int idx = reg_idx + TheISA::FP_Base_DepTag;
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(idx);
return regFile.readFloatRegInt(phys_reg);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchIntReg(int reg_idx, uint64_t val, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
regFile.setIntReg(phys_reg, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegSingle(int reg_idx, float val, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
regFile.setFloatRegSingle(phys_reg, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegDouble(int reg_idx, double val, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
regFile.setFloatRegDouble(phys_reg, val);
}
template <class Impl>
void
FullO3CPU<Impl>::setArchFloatRegInt(int reg_idx, uint64_t val, unsigned tid)
{
PhysRegIndex phys_reg = commitRenameMap[tid].lookup(reg_idx);
regFile.setFloatRegInt(phys_reg, val);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readPC(unsigned tid)
{
return commit.readPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setPC(Addr new_PC,unsigned tid)
{
commit.setPC(new_PC, tid);
}
template <class Impl>
uint64_t
FullO3CPU<Impl>::readNextPC(unsigned tid)
{
return commit.readNextPC(tid);
}
template <class Impl>
void
FullO3CPU<Impl>::setNextPC(uint64_t val,unsigned tid)
{
commit.setNextPC(val, tid);
}
template <class Impl>
typename FullO3CPU<Impl>::ListIt
FullO3CPU<Impl>::addInst(DynInstPtr &inst)
{
instList.push_back(inst);
return --(instList.end());
}
template <class Impl>
void
FullO3CPU<Impl>::instDone(unsigned tid)
{
// Keep an instruction count.
thread[tid]->numInst++;
thread[tid]->numInsts++;
committedInsts[tid]++;
totalCommittedInsts++;
// Check for instruction-count-based events.
comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst);
}
template <class Impl>
void
FullO3CPU<Impl>::addToRemoveList(DynInstPtr &inst)
{
removeInstsThisCycle = true;
removeList.push(inst->getInstListIt());
}
template <class Impl>
void
FullO3CPU<Impl>::removeFrontInst(DynInstPtr &inst)
{
DPRINTF(FullCPU, "FullCPU: Removing committed instruction [tid:%i] PC %#x "
"[sn:%lli]\n",
inst->threadNumber, inst->readPC(), inst->seqNum);
removeInstsThisCycle = true;
// Remove the front instruction.
removeList.push(inst->getInstListIt());
}
template <class Impl>
void
FullO3CPU<Impl>::removeInstsNotInROB(unsigned tid)
{
DPRINTF(FullCPU, "FullCPU: Thread %i: Deleting instructions from instruction"
" list.\n", tid);
ListIt end_it;
bool rob_empty = false;
if (instList.empty()) {
return;
} else if (rob.isEmpty(/*tid*/)) {
DPRINTF(FullCPU, "FullCPU: ROB is empty, squashing all insts.\n");
end_it = instList.begin();
rob_empty = true;
} else {
end_it = (rob.readTailInst(tid))->getInstListIt();
DPRINTF(FullCPU, "FullCPU: ROB is not empty, squashing insts not in ROB.\n");
}
removeInstsThisCycle = true;
ListIt inst_it = instList.end();
inst_it--;
// Walk through the instruction list, removing any instructions
// that were inserted after the given instruction iterator, end_it.
while (inst_it != end_it) {
assert(!instList.empty());
squashInstIt(inst_it, tid);
inst_it--;
}
// If the ROB was empty, then we actually need to remove the first
// instruction as well.
if (rob_empty) {
squashInstIt(inst_it, tid);
}
}
template <class Impl>
void
FullO3CPU<Impl>::removeInstsUntil(const InstSeqNum &seq_num,
unsigned tid)
{
assert(!instList.empty());
removeInstsThisCycle = true;
ListIt inst_iter = instList.end();
inst_iter--;
DPRINTF(FullCPU, "FullCPU: Deleting instructions from instruction "
"list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
tid, seq_num, (*inst_iter)->seqNum);
while ((*inst_iter)->seqNum > seq_num) {
bool break_loop = (inst_iter == instList.begin());
squashInstIt(inst_iter, tid);
inst_iter--;
if (break_loop)
break;
}
}
template <class Impl>
inline void
FullO3CPU<Impl>::squashInstIt(const ListIt &instIt, const unsigned &tid)
{
if ((*instIt)->threadNumber == tid) {
DPRINTF(FullCPU, "FullCPU: Squashing instruction, "
"[tid:%i] [sn:%lli] PC %#x\n",
(*instIt)->threadNumber,
(*instIt)->seqNum,
(*instIt)->readPC());
// Mark it as squashed.
(*instIt)->setSquashed();
// @todo: Formulate a consistent method for deleting
// instructions from the instruction list
// Remove the instruction from the list.
removeList.push(instIt);
}
}
template <class Impl>
void
FullO3CPU<Impl>::cleanUpRemovedInsts()
{
while (!removeList.empty()) {
DPRINTF(FullCPU, "FullCPU: Removing instruction, "
"[tid:%i] [sn:%lli] PC %#x\n",
(*removeList.front())->threadNumber,
(*removeList.front())->seqNum,
(*removeList.front())->readPC());
instList.erase(removeList.front());
removeList.pop();
}
removeInstsThisCycle = false;
}
/*
template <class Impl>
void
FullO3CPU<Impl>::removeAllInsts()
{
instList.clear();
}
*/
template <class Impl>
void
FullO3CPU<Impl>::dumpInsts()
{
int num = 0;
ListIt inst_list_it = instList.begin();
cprintf("Dumping Instruction List\n");
while (inst_list_it != instList.end()) {
cprintf("Instruction:%i\nPC:%#x\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
"Squashed:%i\n\n",
num, (*inst_list_it)->readPC(), (*inst_list_it)->threadNumber,
(*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
(*inst_list_it)->isSquashed());
inst_list_it++;
++num;
}
}
/*
template <class Impl>
void
FullO3CPU<Impl>::wakeDependents(DynInstPtr &inst)
{
iew.wakeDependents(inst);
}
*/
template <class Impl>
void
FullO3CPU<Impl>::wakeCPU()
{
if (activityRec.active() || tickEvent.scheduled()) {
DPRINTF(Activity, "CPU already running.\n");
return;
}
DPRINTF(Activity, "Waking up CPU\n");
idleCycles += (curTick - 1) - lastRunningCycle;
tickEvent.schedule(curTick);
}
template <class Impl>
int
FullO3CPU<Impl>::getFreeTid()
{
for (int i=0; i < numThreads; i++) {
if (!tids[i]) {
tids[i] = true;
return i;
}
}
return -1;
}
template <class Impl>
void
FullO3CPU<Impl>::doContextSwitch()
{
if (contextSwitch) {
//ADD CODE TO DEACTIVE THREAD HERE (???)
for (int tid=0; tid < cpuWaitList.size(); tid++) {
activateWhenReady(tid);
}
if (cpuWaitList.size() == 0)
contextSwitch = true;
}
}
template <class Impl>
void
FullO3CPU<Impl>::updateThreadPriority()
{
if (activeThreads.size() > 1)
{
//DEFAULT TO ROUND ROBIN SCHEME
//e.g. Move highest priority to end of thread list
list<unsigned>::iterator list_begin = activeThreads.begin();
list<unsigned>::iterator list_end = activeThreads.end();
unsigned high_thread = *list_begin;
activeThreads.erase(list_begin);
activeThreads.push_back(high_thread);
}
}
// Forward declaration of FullO3CPU.
template class FullO3CPU<AlphaSimpleImpl>;