gem5/src/sim/eventq.hh
Brandon Potter a928a438b8 style: [patch 3/22] reduce include dependencies in some headers
Used cppclean to help identify useless includes and removed them. This
involved erroneously included headers, but also cases where forward
declarations could have been used rather than a full include.
2016-11-09 14:27:40 -06:00

784 lines
24 KiB
C++

/*
* Copyright (c) 2000-2005 The Regents of The University of Michigan
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* Copyright (c) 2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
/* @file
* EventQueue interfaces
*/
#ifndef __SIM_EVENTQ_HH__
#define __SIM_EVENTQ_HH__
#include <algorithm>
#include <cassert>
#include <climits>
#include <iosfwd>
#include <memory>
#include <mutex>
#include <string>
#include "base/flags.hh"
#include "base/types.hh"
#include "debug/Event.hh"
#include "sim/serialize.hh"
class EventQueue; // forward declaration
class BaseGlobalEvent;
//! Simulation Quantum for multiple eventq simulation.
//! The quantum value is the period length after which the queues
//! synchronize themselves with each other. This means that any
//! event to scheduled on Queue A which is generated by an event on
//! Queue B should be at least simQuantum ticks away in future.
extern Tick simQuantum;
//! Current number of allocated main event queues.
extern uint32_t numMainEventQueues;
//! Array for main event queues.
extern std::vector<EventQueue *> mainEventQueue;
#ifndef SWIG
//! The current event queue for the running thread. Access to this queue
//! does not require any locking from the thread.
extern __thread EventQueue *_curEventQueue;
#endif
//! Current mode of execution: parallel / serial
extern bool inParallelMode;
//! Function for returning eventq queue for the provided
//! index. The function allocates a new queue in case one
//! does not exist for the index, provided that the index
//! is with in bounds.
EventQueue *getEventQueue(uint32_t index);
inline EventQueue *curEventQueue() { return _curEventQueue; }
inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
/**
* Common base class for Event and GlobalEvent, so they can share flag
* and priority definitions and accessor functions. This class should
* not be used directly.
*/
class EventBase
{
protected:
typedef unsigned short FlagsType;
typedef ::Flags<FlagsType> Flags;
static const FlagsType PublicRead = 0x003f; // public readable flags
static const FlagsType PublicWrite = 0x001d; // public writable flags
static const FlagsType Squashed = 0x0001; // has been squashed
static const FlagsType Scheduled = 0x0002; // has been scheduled
static const FlagsType AutoDelete = 0x0004; // delete after dispatch
/**
* This used to be AutoSerialize. This value can't be reused
* without changing the checkpoint version since the flag field
* gets serialized.
*/
static const FlagsType Reserved0 = 0x0008;
static const FlagsType IsExitEvent = 0x0010; // special exit event
static const FlagsType IsMainQueue = 0x0020; // on main event queue
static const FlagsType Initialized = 0x7a40; // somewhat random bits
static const FlagsType InitMask = 0xffc0; // mask for init bits
public:
typedef int8_t Priority;
/// Event priorities, to provide tie-breakers for events scheduled
/// at the same cycle. Most events are scheduled at the default
/// priority; these values are used to control events that need to
/// be ordered within a cycle.
/// Minimum priority
static const Priority Minimum_Pri = SCHAR_MIN;
/// If we enable tracing on a particular cycle, do that as the
/// very first thing so we don't miss any of the events on
/// that cycle (even if we enter the debugger).
static const Priority Debug_Enable_Pri = -101;
/// Breakpoints should happen before anything else (except
/// enabling trace output), so we don't miss any action when
/// debugging.
static const Priority Debug_Break_Pri = -100;
/// CPU switches schedule the new CPU's tick event for the
/// same cycle (after unscheduling the old CPU's tick event).
/// The switch needs to come before any tick events to make
/// sure we don't tick both CPUs in the same cycle.
static const Priority CPU_Switch_Pri = -31;
/// For some reason "delayed" inter-cluster writebacks are
/// scheduled before regular writebacks (which have default
/// priority). Steve?
static const Priority Delayed_Writeback_Pri = -1;
/// Default is zero for historical reasons.
static const Priority Default_Pri = 0;
/// DVFS update event leads to stats dump therefore given a lower priority
/// to ensure all relevant states have been updated
static const Priority DVFS_Update_Pri = 31;
/// Serailization needs to occur before tick events also, so
/// that a serialize/unserialize is identical to an on-line
/// CPU switch.
static const Priority Serialize_Pri = 32;
/// CPU ticks must come after other associated CPU events
/// (such as writebacks).
static const Priority CPU_Tick_Pri = 50;
/// Statistics events (dump, reset, etc.) come after
/// everything else, but before exit.
static const Priority Stat_Event_Pri = 90;
/// Progress events come at the end.
static const Priority Progress_Event_Pri = 95;
/// If we want to exit on this cycle, it's the very last thing
/// we do.
static const Priority Sim_Exit_Pri = 100;
/// Maximum priority
static const Priority Maximum_Pri = SCHAR_MAX;
};
/*
* An item on an event queue. The action caused by a given
* event is specified by deriving a subclass and overriding the
* process() member function.
*
* Caution, the order of members is chosen to maximize data packing.
*/
class Event : public EventBase, public Serializable
{
friend class EventQueue;
private:
// The event queue is now a linked list of linked lists. The
// 'nextBin' pointer is to find the bin, where a bin is defined as
// when+priority. All events in the same bin will be stored in a
// second linked list (a stack) maintained by the 'nextInBin'
// pointer. The list will be accessed in LIFO order. The end
// result is that the insert/removal in 'nextBin' is
// linear/constant, and the lookup/removal in 'nextInBin' is
// constant/constant. Hopefully this is a significant improvement
// over the current fully linear insertion.
Event *nextBin;
Event *nextInBin;
static Event *insertBefore(Event *event, Event *curr);
static Event *removeItem(Event *event, Event *last);
Tick _when; //!< timestamp when event should be processed
Priority _priority; //!< event priority
Flags flags;
#ifndef NDEBUG
/// Global counter to generate unique IDs for Event instances
static Counter instanceCounter;
/// This event's unique ID. We can also use pointer values for
/// this but they're not consistent across runs making debugging
/// more difficult. Thus we use a global counter value when
/// debugging.
Counter instance;
/// queue to which this event belongs (though it may or may not be
/// scheduled on this queue yet)
EventQueue *queue;
#endif
#ifdef EVENTQ_DEBUG
Tick whenCreated; //!< time created
Tick whenScheduled; //!< time scheduled
#endif
void
setWhen(Tick when, EventQueue *q)
{
_when = when;
#ifndef NDEBUG
queue = q;
#endif
#ifdef EVENTQ_DEBUG
whenScheduled = curTick();
#endif
}
bool
initialized() const
{
return (flags & InitMask) == Initialized;
}
protected:
/// Accessor for flags.
Flags
getFlags() const
{
return flags & PublicRead;
}
bool
isFlagSet(Flags _flags) const
{
assert(_flags.noneSet(~PublicRead));
return flags.isSet(_flags);
}
/// Accessor for flags.
void
setFlags(Flags _flags)
{
assert(_flags.noneSet(~PublicWrite));
flags.set(_flags);
}
void
clearFlags(Flags _flags)
{
assert(_flags.noneSet(~PublicWrite));
flags.clear(_flags);
}
void
clearFlags()
{
flags.clear(PublicWrite);
}
// This function isn't really useful if TRACING_ON is not defined
virtual void trace(const char *action); //!< trace event activity
public:
/*
* Event constructor
* @param queue that the event gets scheduled on
*/
Event(Priority p = Default_Pri, Flags f = 0)
: nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
flags(Initialized | f)
{
assert(f.noneSet(~PublicWrite));
#ifndef NDEBUG
instance = ++instanceCounter;
queue = NULL;
#endif
#ifdef EVENTQ_DEBUG
whenCreated = curTick();
whenScheduled = 0;
#endif
}
virtual ~Event();
virtual const std::string name() const;
/// Return a C string describing the event. This string should
/// *not* be dynamically allocated; just a const char array
/// describing the event class.
virtual const char *description() const;
/// Dump the current event data
void dump() const;
public:
/*
* This member function is invoked when the event is processed
* (occurs). There is no default implementation; each subclass
* must provide its own implementation. The event is not
* automatically deleted after it is processed (to allow for
* statically allocated event objects).
*
* If the AutoDestroy flag is set, the object is deleted once it
* is processed.
*/
virtual void process() = 0;
/// Determine if the current event is scheduled
bool scheduled() const { return flags.isSet(Scheduled); }
/// Squash the current event
void squash() { flags.set(Squashed); }
/// Check whether the event is squashed
bool squashed() const { return flags.isSet(Squashed); }
/// See if this is a SimExitEvent (without resorting to RTTI)
bool isExitEvent() const { return flags.isSet(IsExitEvent); }
/// Check whether this event will auto-delete
bool isAutoDelete() const { return flags.isSet(AutoDelete); }
/// Get the time that the event is scheduled
Tick when() const { return _when; }
/// Get the event priority
Priority priority() const { return _priority; }
//! If this is part of a GlobalEvent, return the pointer to the
//! Global Event. By default, there is no GlobalEvent, so return
//! NULL. (Overridden in GlobalEvent::BarrierEvent.)
virtual BaseGlobalEvent *globalEvent() { return NULL; }
#ifndef SWIG
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
#endif
};
#ifndef SWIG
inline bool
operator<(const Event &l, const Event &r)
{
return l.when() < r.when() ||
(l.when() == r.when() && l.priority() < r.priority());
}
inline bool
operator>(const Event &l, const Event &r)
{
return l.when() > r.when() ||
(l.when() == r.when() && l.priority() > r.priority());
}
inline bool
operator<=(const Event &l, const Event &r)
{
return l.when() < r.when() ||
(l.when() == r.when() && l.priority() <= r.priority());
}
inline bool
operator>=(const Event &l, const Event &r)
{
return l.when() > r.when() ||
(l.when() == r.when() && l.priority() >= r.priority());
}
inline bool
operator==(const Event &l, const Event &r)
{
return l.when() == r.when() && l.priority() == r.priority();
}
inline bool
operator!=(const Event &l, const Event &r)
{
return l.when() != r.when() || l.priority() != r.priority();
}
#endif
/**
* Queue of events sorted in time order
*
* Events are scheduled (inserted into the event queue) using the
* schedule() method. This method either inserts a <i>synchronous</i>
* or <i>asynchronous</i> event.
*
* Synchronous events are scheduled using schedule() method with the
* argument 'global' set to false (default). This should only be done
* from a thread holding the event queue lock
* (EventQueue::service_mutex). The lock is always held when an event
* handler is called, it can therefore always insert events into its
* own event queue unless it voluntarily releases the lock.
*
* Events can be scheduled across thread (and event queue borders) by
* either scheduling asynchronous events or taking the target event
* queue's lock. However, the lock should <i>never</i> be taken
* directly since this is likely to cause deadlocks. Instead, code
* that needs to schedule events in other event queues should
* temporarily release its own queue and lock the new queue. This
* prevents deadlocks since a single thread never owns more than one
* event queue lock. This functionality is provided by the
* ScopedMigration helper class. Note that temporarily migrating
* between event queues can make the simulation non-deterministic, it
* should therefore be limited to cases where that can be tolerated
* (e.g., handling asynchronous IO or fast-forwarding in KVM).
*
* Asynchronous events can also be scheduled using the normal
* schedule() method with the 'global' parameter set to true. Unlike
* the previous queue migration strategy, this strategy is fully
* deterministic. This causes the event to be inserted in a separate
* queue of asynchronous events (async_queue), which is merged main
* event queue at the end of each simulation quantum (by calling the
* handleAsyncInsertions() method). Note that this implies that such
* events must happen at least one simulation quantum into the future,
* otherwise they risk being scheduled in the past by
* handleAsyncInsertions().
*/
class EventQueue
{
private:
std::string objName;
Event *head;
Tick _curTick;
//! Mutex to protect async queue.
std::mutex async_queue_mutex;
//! List of events added by other threads to this event queue.
std::list<Event*> async_queue;
/**
* Lock protecting event handling.
*
* This lock is always taken when servicing events. It is assumed
* that the thread scheduling new events (not asynchronous events
* though) have taken this lock. This is normally done by
* serviceOne() since new events are typically scheduled as a
* response to an earlier event.
*
* This lock is intended to be used to temporarily steal an event
* queue to support inter-thread communication when some
* deterministic timing can be sacrificed for speed. For example,
* the KVM CPU can use this support to access devices running in a
* different thread.
*
* @see EventQueue::ScopedMigration.
* @see EventQueue::ScopedRelease
* @see EventQueue::lock()
* @see EventQueue::unlock()
*/
std::mutex service_mutex;
//! Insert / remove event from the queue. Should only be called
//! by thread operating this queue.
void insert(Event *event);
void remove(Event *event);
//! Function for adding events to the async queue. The added events
//! are added to main event queue later. Threads, other than the
//! owning thread, should call this function instead of insert().
void asyncInsert(Event *event);
EventQueue(const EventQueue &);
public:
#ifndef SWIG
/**
* Temporarily migrate execution to a different event queue.
*
* An instance of this class temporarily migrates execution to a
* different event queue by releasing the current queue, locking
* the new queue, and updating curEventQueue(). This can, for
* example, be useful when performing IO across thread event
* queues when timing is not crucial (e.g., during fast
* forwarding).
*/
class ScopedMigration
{
public:
ScopedMigration(EventQueue *_new_eq)
: new_eq(*_new_eq), old_eq(*curEventQueue())
{
old_eq.unlock();
new_eq.lock();
curEventQueue(&new_eq);
}
~ScopedMigration()
{
new_eq.unlock();
old_eq.lock();
curEventQueue(&old_eq);
}
private:
EventQueue &new_eq;
EventQueue &old_eq;
};
/**
* Temporarily release the event queue service lock.
*
* There are cases where it is desirable to temporarily release
* the event queue lock to prevent deadlocks. For example, when
* waiting on the global barrier, we need to release the lock to
* prevent deadlocks from happening when another thread tries to
* temporarily take over the event queue waiting on the barrier.
*/
class ScopedRelease
{
public:
ScopedRelease(EventQueue *_eq)
: eq(*_eq)
{
eq.unlock();
}
~ScopedRelease()
{
eq.lock();
}
private:
EventQueue &eq;
};
#endif
EventQueue(const std::string &n);
virtual const std::string name() const { return objName; }
void name(const std::string &st) { objName = st; }
//! Schedule the given event on this queue. Safe to call from any
//! thread.
void schedule(Event *event, Tick when, bool global = false);
//! Deschedule the specified event. Should be called only from the
//! owning thread.
void deschedule(Event *event);
//! Reschedule the specified event. Should be called only from
//! the owning thread.
void reschedule(Event *event, Tick when, bool always = false);
Tick nextTick() const { return head->when(); }
void setCurTick(Tick newVal) { _curTick = newVal; }
Tick getCurTick() const { return _curTick; }
Event *getHead() const { return head; }
Event *serviceOne();
// process all events up to the given timestamp. we inline a
// quick test to see if there are any events to process; if so,
// call the internal out-of-line version to process them all.
void
serviceEvents(Tick when)
{
while (!empty()) {
if (nextTick() > when)
break;
/**
* @todo this assert is a good bug catcher. I need to
* make it true again.
*/
//assert(head->when() >= when && "event scheduled in the past");
serviceOne();
}
setCurTick(when);
}
// return true if no events are queued
bool empty() const { return head == NULL; }
void dump() const;
bool debugVerify() const;
//! Function for moving events from the async_queue to the main queue.
void handleAsyncInsertions();
/**
* Function to signal that the event loop should be woken up because
* an event has been scheduled by an agent outside the gem5 event
* loop(s) whose event insertion may not have been noticed by gem5.
* This function isn't needed by the usual gem5 event loop but may
* be necessary in derived EventQueues which host gem5 onto other
* schedulers.
*
* @param when Time of a delayed wakeup (if known). This parameter
* can be used by an implementation to schedule a wakeup in the
* future if it is sure it will remain active until then.
* Or it can be ignored and the event queue can be woken up now.
*/
virtual void wakeup(Tick when = (Tick)-1) { }
/**
* function for replacing the head of the event queue, so that a
* different set of events can run without disturbing events that have
* already been scheduled. Already scheduled events can be processed
* by replacing the original head back.
* USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
* NOT RECOMMENDED FOR USE.
*/
Event* replaceHead(Event* s);
/**@{*/
/**
* Provide an interface for locking/unlocking the event queue.
*
* @warn Do NOT use these methods directly unless you really know
* what you are doing. Incorrect use can easily lead to simulator
* deadlocks.
*
* @see EventQueue::ScopedMigration.
* @see EventQueue::ScopedRelease
* @see EventQueue
*/
void lock() { service_mutex.lock(); }
void unlock() { service_mutex.unlock(); }
/**@}*/
/**
* Reschedule an event after a checkpoint.
*
* Since events don't know which event queue they belong to,
* parent objects need to reschedule events themselves. This
* method conditionally schedules an event that has the Scheduled
* flag set. It should be called by parent objects after
* unserializing an object.
*
* @warn Only use this method after unserializing an Event.
*/
void checkpointReschedule(Event *event);
virtual ~EventQueue() { }
};
void dumpMainQueue();
#ifndef SWIG
class EventManager
{
protected:
/** A pointer to this object's event queue */
EventQueue *eventq;
public:
EventManager(EventManager &em) : eventq(em.eventq) {}
EventManager(EventManager *em) : eventq(em->eventq) {}
EventManager(EventQueue *eq) : eventq(eq) {}
EventQueue *
eventQueue() const
{
return eventq;
}
void
schedule(Event &event, Tick when)
{
eventq->schedule(&event, when);
}
void
deschedule(Event &event)
{
eventq->deschedule(&event);
}
void
reschedule(Event &event, Tick when, bool always = false)
{
eventq->reschedule(&event, when, always);
}
void
schedule(Event *event, Tick when)
{
eventq->schedule(event, when);
}
void
deschedule(Event *event)
{
eventq->deschedule(event);
}
void
reschedule(Event *event, Tick when, bool always = false)
{
eventq->reschedule(event, when, always);
}
void wakeupEventQueue(Tick when = (Tick)-1)
{
eventq->wakeup(when);
}
void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
};
template <class T, void (T::* F)()>
void
DelayFunction(EventQueue *eventq, Tick when, T *object)
{
class DelayEvent : public Event
{
private:
T *object;
public:
DelayEvent(T *o)
: Event(Default_Pri, AutoDelete), object(o)
{ }
void process() { (object->*F)(); }
const char *description() const { return "delay"; }
};
eventq->schedule(new DelayEvent(object), when);
}
template <class T, void (T::* F)()>
class EventWrapper : public Event
{
private:
T *object;
public:
EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
: Event(p), object(obj)
{
if (del)
setFlags(AutoDelete);
}
EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
: Event(p), object(&obj)
{
if (del)
setFlags(AutoDelete);
}
void process() { (object->*F)(); }
const std::string
name() const
{
return object->name() + ".wrapped_event";
}
const char *description() const { return "EventWrapped"; }
};
#endif
#endif // __SIM_EVENTQ_HH__