gem5/src/mem/bridge.hh
Andreas Hansson 8bc925e36d mem: Align rules for sinking inhibited packets at the slave
This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.

In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
2015-11-06 03:26:35 -05:00

334 lines
11 KiB
C++

/*
* Copyright (c) 2011-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Steve Reinhardt
* Andreas Hansson
*/
/**
* @file
* Declaration of a memory-mapped bridge that connects a master
* and a slave through a request and response queue.
*/
#ifndef __MEM_BRIDGE_HH__
#define __MEM_BRIDGE_HH__
#include <deque>
#include "base/types.hh"
#include "mem/mem_object.hh"
#include "params/Bridge.hh"
/**
* A bridge is used to interface two different crossbars (or in general a
* memory-mapped master and slave), with buffering for requests and
* responses. The bridge has a fixed delay for packets passing through
* it and responds to a fixed set of address ranges.
*
* The bridge comprises a slave port and a master port, that buffer
* outgoing responses and requests respectively. Buffer space is
* reserved when a request arrives, also reserving response space
* before forwarding the request. If there is no space present, then
* the bridge will delay accepting the packet until space becomes
* available.
*/
class Bridge : public MemObject
{
protected:
/**
* A deferred packet stores a packet along with its scheduled
* transmission time
*/
class DeferredPacket
{
public:
const Tick tick;
const PacketPtr pkt;
DeferredPacket(PacketPtr _pkt, Tick _tick) : tick(_tick), pkt(_pkt)
{ }
};
// Forward declaration to allow the slave port to have a pointer
class BridgeMasterPort;
/**
* The port on the side that receives requests and sends
* responses. The slave port has a set of address ranges that it
* is responsible for. The slave port also has a buffer for the
* responses not yet sent.
*/
class BridgeSlavePort : public SlavePort
{
private:
/** The bridge to which this port belongs. */
Bridge& bridge;
/**
* Master port on the other side of the bridge.
*/
BridgeMasterPort& masterPort;
/** Minimum request delay though this bridge. */
const Cycles delay;
/** Address ranges to pass through the bridge */
const AddrRangeList ranges;
/**
* Response packet queue. Response packets are held in this
* queue for a specified delay to model the processing delay
* of the bridge. We use a deque as we need to iterate over
* the items for functional accesses.
*/
std::deque<DeferredPacket> transmitList;
/** Counter to track the outstanding responses. */
unsigned int outstandingResponses;
/** If we should send a retry when space becomes available. */
bool retryReq;
/** Max queue size for reserved responses. */
unsigned int respQueueLimit;
/**
* Upstream caches need this packet until true is returned, so
* hold it for deletion until a subsequent call
*/
std::unique_ptr<Packet> pendingDelete;
/**
* Is this side blocked from accepting new response packets.
*
* @return true if the reserved space has reached the set limit
*/
bool respQueueFull() const;
/**
* Handle send event, scheduled when the packet at the head of
* the response queue is ready to transmit (for timing
* accesses only).
*/
void trySendTiming();
/** Send event for the response queue. */
EventWrapper<BridgeSlavePort,
&BridgeSlavePort::trySendTiming> sendEvent;
public:
/**
* Constructor for the BridgeSlavePort.
*
* @param _name the port name including the owner
* @param _bridge the structural owner
* @param _masterPort the master port on the other side of the bridge
* @param _delay the delay in cycles from receiving to sending
* @param _resp_limit the size of the response queue
* @param _ranges a number of address ranges to forward
*/
BridgeSlavePort(const std::string& _name, Bridge& _bridge,
BridgeMasterPort& _masterPort, Cycles _delay,
int _resp_limit, std::vector<AddrRange> _ranges);
/**
* Queue a response packet to be sent out later and also schedule
* a send if necessary.
*
* @param pkt a response to send out after a delay
* @param when tick when response packet should be sent
*/
void schedTimingResp(PacketPtr pkt, Tick when);
/**
* Retry any stalled request that we have failed to accept at
* an earlier point in time. This call will do nothing if no
* request is waiting.
*/
void retryStalledReq();
protected:
/** When receiving a timing request from the peer port,
pass it to the bridge. */
bool recvTimingReq(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the bridge. */
void recvRespRetry();
/** When receiving a Atomic requestfrom the peer port,
pass it to the bridge. */
Tick recvAtomic(PacketPtr pkt);
/** When receiving a Functional request from the peer port,
pass it to the bridge. */
void recvFunctional(PacketPtr pkt);
/** When receiving a address range request the peer port,
pass it to the bridge. */
AddrRangeList getAddrRanges() const;
};
/**
* Port on the side that forwards requests and receives
* responses. The master port has a buffer for the requests not
* yet sent.
*/
class BridgeMasterPort : public MasterPort
{
private:
/** The bridge to which this port belongs. */
Bridge& bridge;
/**
* The slave port on the other side of the bridge.
*/
BridgeSlavePort& slavePort;
/** Minimum delay though this bridge. */
const Cycles delay;
/**
* Request packet queue. Request packets are held in this
* queue for a specified delay to model the processing delay
* of the bridge. We use a deque as we need to iterate over
* the items for functional accesses.
*/
std::deque<DeferredPacket> transmitList;
/** Max queue size for request packets */
const unsigned int reqQueueLimit;
/**
* Handle send event, scheduled when the packet at the head of
* the outbound queue is ready to transmit (for timing
* accesses only).
*/
void trySendTiming();
/** Send event for the request queue. */
EventWrapper<BridgeMasterPort,
&BridgeMasterPort::trySendTiming> sendEvent;
public:
/**
* Constructor for the BridgeMasterPort.
*
* @param _name the port name including the owner
* @param _bridge the structural owner
* @param _slavePort the slave port on the other side of the bridge
* @param _delay the delay in cycles from receiving to sending
* @param _req_limit the size of the request queue
*/
BridgeMasterPort(const std::string& _name, Bridge& _bridge,
BridgeSlavePort& _slavePort, Cycles _delay,
int _req_limit);
/**
* Is this side blocked from accepting new request packets.
*
* @return true if the occupied space has reached the set limit
*/
bool reqQueueFull() const;
/**
* Queue a request packet to be sent out later and also schedule
* a send if necessary.
*
* @param pkt a request to send out after a delay
* @param when tick when response packet should be sent
*/
void schedTimingReq(PacketPtr pkt, Tick when);
/**
* Check a functional request against the packets in our
* request queue.
*
* @param pkt packet to check against
*
* @return true if we find a match
*/
bool checkFunctional(PacketPtr pkt);
protected:
/** When receiving a timing request from the peer port,
pass it to the bridge. */
bool recvTimingResp(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the bridge. */
void recvReqRetry();
};
/** Slave port of the bridge. */
BridgeSlavePort slavePort;
/** Master port of the bridge. */
BridgeMasterPort masterPort;
public:
virtual BaseMasterPort& getMasterPort(const std::string& if_name,
PortID idx = InvalidPortID);
virtual BaseSlavePort& getSlavePort(const std::string& if_name,
PortID idx = InvalidPortID);
virtual void init();
typedef BridgeParams Params;
Bridge(Params *p);
};
#endif //__MEM_BRIDGE_HH__