gem5/src/gpu-compute/wavefront.hh
Tony Gutierrez d327cdba07 gpu-compute: add gpu_isa.hh to switch hdrs, add GPUISA to WF
the GPUISA class is meant to encapsulate any ISA-specific behavior - special
register accesses, isa-specific WF/kernel state, etc. - in a generic enough
way so that it may be used in ISA-agnostic code.

gpu-compute: use the GPUISA object to advance the PC

the GPU model treats the PC as a pointer to individual instruction objects -
which are store in a contiguous array - and not a byte address to be fetched
from the real memory system. this is ok for HSAIL because all instructions
are considered by the model to be the same size.

in machine ISA, however, instructions may be 32b or 64b, and branches are
calculated by advancing the PC by the number of words (4 byte chunks) it
needs to advance in the real instruction stream. because of this there is
a mismatch between the PC we use to index into the instruction array, and
the actual byte address PC the ISA expects. here we move the PC advance
calculation to the ISA so that differences in the instrucion sizes may be
accounted for in generic way.
2016-10-26 22:47:38 -04:00

396 lines
12 KiB
C++

/*
* Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Lisa Hsu
*/
#ifndef __WAVEFRONT_HH__
#define __WAVEFRONT_HH__
#include <cassert>
#include <deque>
#include <memory>
#include <stack>
#include <vector>
#include "arch/gpu_isa.hh"
#include "base/misc.hh"
#include "base/types.hh"
#include "config/the_gpu_isa.hh"
#include "gpu-compute/condition_register_state.hh"
#include "gpu-compute/lds_state.hh"
#include "gpu-compute/misc.hh"
#include "gpu-compute/ndrange.hh"
#include "params/Wavefront.hh"
#include "sim/sim_object.hh"
static const int MAX_NUM_INSTS_PER_WF = 12;
/**
* A reconvergence stack entry conveys the necessary state to implement
* control flow divergence.
*/
struct ReconvergenceStackEntry {
/**
* PC of current instruction.
*/
uint32_t pc;
/**
* PC of the immediate post-dominator instruction, i.e., the value of
* @a pc for the first instruction that will be executed by the wavefront
* when a reconvergence point is reached.
*/
uint32_t rpc;
/**
* Execution mask.
*/
VectorMask execMask;
};
/*
* Arguments for the hsail opcode call, are user defined and variable length.
* The hardware/finalizer can support arguments in hardware or use memory to
* pass arguments. For now, let's assume that an unlimited number of arguments
* are supported in hardware (the compiler inlines functions whenver it can
* anyways, so unless someone is interested in the implications of linking/
* library functions, I think this is a reasonable assumption given the typical
* size of an OpenCL kernel).
*
* Note that call args are different than kernel arguments:
* * All work-items in a kernel refer the same set of kernel arguments
* * Each work-item has it's on set of call args. So a call argument at
* address 0x4 is different for work-item 0 and work-item 1.
*
* Ok, the table below shows an example of how we organize the call arguments in
* the CallArgMem class.
*
* int foo(int arg1, double arg2)
* ___________________________________________________
* | 0: return.0 | 4: return.1 | ... | 252: return.63 |
* |---------------------------------------------------|
* | 256: arg1.0 | 260: arg1.1 | ... | 508: arg1.63 |
* |---------------------------------------------------|
* | 512: arg2.0 | 520: arg2.1 | ... | 1016: arg2.63 |
* ___________________________________________________
*/
class CallArgMem
{
public:
// pointer to buffer for storing function arguments
uint8_t *mem;
int wfSize;
// size of function args
int funcArgsSizePerItem;
template<typename CType>
int
getLaneOffset(int lane, int addr)
{
return addr * wfSize + sizeof(CType) * lane;
}
CallArgMem(int func_args_size_per_item, int wf_size)
: wfSize(wf_size), funcArgsSizePerItem(func_args_size_per_item)
{
mem = (uint8_t*)malloc(funcArgsSizePerItem * wfSize);
}
~CallArgMem()
{
free(mem);
}
template<typename CType>
uint8_t*
getLaneAddr(int lane, int addr)
{
return mem + getLaneOffset<CType>(lane, addr);
}
template<typename CType>
void
setLaneAddr(int lane, int addr, CType val)
{
*((CType*)(mem + getLaneOffset<CType>(lane, addr))) = val;
}
};
class Wavefront : public SimObject
{
public:
enum itype_e {I_ALU,I_GLOBAL,I_SHARED,I_FLAT,I_PRIVATE};
enum status_e {S_STOPPED,S_RETURNING,S_RUNNING};
// Base pointer for array of instruction pointers
uint64_t basePtr;
uint32_t oldBarrierCnt;
uint32_t barrierCnt;
uint32_t barrierId;
uint32_t barrierSlots;
status_e status;
// HW slot id where the WF is mapped to inside a SIMD unit
int wfSlotId;
int kernId;
// SIMD unit where the WV has been scheduled
int simdId;
// pointer to parent CU
ComputeUnit *computeUnit;
std::deque<GPUDynInstPtr> instructionBuffer;
bool pendingFetch;
bool dropFetch;
// Condition Register State (for HSAIL simulations only)
class ConditionRegisterState *condRegState;
// number of single precision VGPRs required by WF
uint32_t maxSpVgprs;
// number of double precision VGPRs required by WF
uint32_t maxDpVgprs;
// map virtual to physical vector register
uint32_t remap(uint32_t vgprIndex, uint32_t size, uint8_t mode=0);
void resizeRegFiles(int num_cregs, int num_sregs, int num_dregs);
bool isGmInstruction(GPUDynInstPtr ii);
bool isLmInstruction(GPUDynInstPtr ii);
bool isOldestInstGMem();
bool isOldestInstLMem();
bool isOldestInstPrivMem();
bool isOldestInstFlatMem();
bool isOldestInstALU();
bool isOldestInstBarrier();
// used for passing spill address to DDInstGPU
std::vector<Addr> lastAddr;
std::vector<uint32_t> workItemId[3];
std::vector<uint32_t> workItemFlatId;
/* kernel launch parameters */
uint32_t workGroupId[3];
uint32_t workGroupSz[3];
uint32_t gridSz[3];
uint32_t wgId;
uint32_t wgSz;
/* the actual WG size can differ than the maximum size */
uint32_t actualWgSz[3];
uint32_t actualWgSzTotal;
void computeActualWgSz(NDRange *ndr);
// wavefront id within a workgroup
uint32_t wfId;
uint32_t maxDynWaveId;
uint32_t dispatchId;
// outstanding global+local memory requests
uint32_t outstandingReqs;
// memory requests between scoreboard
// and execute stage not yet executed
uint32_t memReqsInPipe;
// outstanding global memory write requests
uint32_t outstandingReqsWrGm;
// outstanding local memory write requests
uint32_t outstandingReqsWrLm;
// outstanding global memory read requests
uint32_t outstandingReqsRdGm;
// outstanding local memory read requests
uint32_t outstandingReqsRdLm;
uint32_t rdLmReqsInPipe;
uint32_t rdGmReqsInPipe;
uint32_t wrLmReqsInPipe;
uint32_t wrGmReqsInPipe;
int memTraceBusy;
uint64_t lastTrace;
// number of vector registers reserved by WF
int reservedVectorRegs;
// Index into the Vector Register File's namespace where the WF's registers
// will live while the WF is executed
uint32_t startVgprIndex;
// Old value of destination gpr (for trace)
std::vector<uint32_t> oldVgpr;
// Id of destination gpr (for trace)
uint32_t oldVgprId;
// Tick count of last old_vgpr copy
uint64_t oldVgprTcnt;
// Old value of destination gpr (for trace)
std::vector<uint64_t> oldDgpr;
// Id of destination gpr (for trace)
uint32_t oldDgprId;
// Tick count of last old_vgpr copy
uint64_t oldDgprTcnt;
// Execution mask at wavefront start
VectorMask initMask;
// number of barriers this WF has joined
std::vector<int> barCnt;
int maxBarCnt;
// Flag to stall a wave on barrier
bool stalledAtBarrier;
// a pointer to the fraction of the LDS allocated
// to this workgroup (thus this wavefront)
LdsChunk *ldsChunk;
// A pointer to the spill area
Addr spillBase;
// The size of the spill area
uint32_t spillSizePerItem;
// The vector width of the spill area
uint32_t spillWidth;
// A pointer to the private memory area
Addr privBase;
// The size of the private memory area
uint32_t privSizePerItem;
// A pointer ot the read-only memory area
Addr roBase;
// size of the read-only memory area
uint32_t roSize;
// pointer to buffer for storing kernel arguments
uint8_t *kernelArgs;
// unique WF id over all WFs executed across all CUs
uint64_t wfDynId;
// number of times instruction issue for this wavefront is blocked
// due to VRF port availability
Stats::Scalar numTimesBlockedDueVrfPortAvail;
// number of times an instruction of a WF is blocked from being issued
// due to WAR and WAW dependencies
Stats::Scalar numTimesBlockedDueWAXDependencies;
// number of times an instruction of a WF is blocked from being issued
// due to WAR and WAW dependencies
Stats::Scalar numTimesBlockedDueRAWDependencies;
// distribution of executed instructions based on their register
// operands; this is used to highlight the load on the VRF
Stats::Distribution srcRegOpDist;
Stats::Distribution dstRegOpDist;
// Functions to operate on call argument memory
// argument memory for hsail call instruction
CallArgMem *callArgMem;
void
initCallArgMem(int func_args_size_per_item, int wf_size)
{
callArgMem = new CallArgMem(func_args_size_per_item, wf_size);
}
template<typename CType>
CType
readCallArgMem(int lane, int addr)
{
return *((CType*)(callArgMem->getLaneAddr<CType>(lane, addr)));
}
template<typename CType>
void
writeCallArgMem(int lane, int addr, CType val)
{
callArgMem->setLaneAddr<CType>(lane, addr, val);
}
typedef WavefrontParams Params;
Wavefront(const Params *p);
~Wavefront();
virtual void init();
void
setParent(ComputeUnit *cu)
{
computeUnit = cu;
}
void start(uint64_t _wfDynId, uint64_t _base_ptr);
void exec();
void updateResources();
int ready(itype_e type);
bool instructionBufferHasBranch();
void regStats();
VectorMask getPred() { return execMask() & initMask; }
bool waitingAtBarrier(int lane);
void pushToReconvergenceStack(uint32_t pc, uint32_t rpc,
const VectorMask& exec_mask);
void popFromReconvergenceStack();
uint32_t pc() const;
uint32_t rpc() const;
VectorMask execMask() const;
bool execMask(int lane) const;
void pc(uint32_t new_pc);
void discardFetch();
/**
* Returns the size of the static hardware context of a particular wavefront
* This should be updated everytime the context is changed
*/
uint32_t getStaticContextSize() const;
/**
* Returns the hardware context as a stream of bytes
* This method is designed for HSAIL execution
*/
void getContext(const void *out);
/**
* Sets the hardware context fromt a stream of bytes
* This method is designed for HSAIL execution
*/
void setContext(const void *in);
TheGpuISA::GPUISA&
gpuISA()
{
return _gpuISA;
}
private:
TheGpuISA::GPUISA _gpuISA;
/**
* Stack containing Control Flow Graph nodes (i.e., kernel instructions)
* to be visited by the wavefront, and the associated execution masks. The
* reconvergence stack grows every time the wavefront reaches a divergence
* point (branch instruction), and shrinks every time the wavefront
* reaches a reconvergence point (immediate post-dominator instruction).
*/
std::deque<std::unique_ptr<ReconvergenceStackEntry>> reconvergenceStack;
};
#endif // __WAVEFRONT_HH__