gem5/splash2/codes/apps/raytrace/tri.C
Sanchayan Maity 0f4b39775c Fix splash2 benchmark
During the last commit of splash2 benchmark it seems before committing
when we ran "make clean", it effectively undid what the patch at below
link did
http://www.capsl.udel.edu/splash/Download.html

Fix this since without this it is not possible to build the arcane
splash2 benchmark.
2017-04-26 21:33:02 +05:30

851 lines
17 KiB
C

/*************************************************************************/
/* */
/* Copyright (c) 1994 Stanford University */
/* */
/* All rights reserved. */
/* */
/* Permission is given to use, copy, and modify this software for any */
/* non-commercial purpose as long as this copyright notice is not */
/* removed. All other uses, including redistribution in whole or in */
/* part, are forbidden without prior written permission. */
/* */
/* This software is provided with absolutely no warranty and no */
/* support. */
/* */
/*************************************************************************/
/*
* NAME
* tri.c
*
* DESCRIPTION
* This file contains all routines that operate on triangle objects.
*
*/
#include <stdio.h>
#include <math.h>
#include "rt.h"
#define X_NORM 1
#define Y_NORM 2
#define Z_NORM 3
#define CLOCKWISE 1
#define COUNTER_CLOCKWISE 2
#define INSIDE(x, a) (((a) <= 0.0 && (x) >= (a) && (x) <= 0.0) || \
((a) > 0.0 && (x) >= 0.0 && (x) <= (a)))
/*
* NAME
* TriName - return the object name
*
* SYNOPSIS
* CHAR *TriName()
*
* RETURNS
* A pointer to the name string.
*/
CHAR *TriName()
{
return ("poly");
}
/*
* NAME
* TriPrint - print the triangle object data to stdout
*
* SYNOPSIS
* VOID TriPrint(po)
* OBJECT *po; // Ptr to triangle object.
*
* RETURNS
* Nothing.
*/
VOID TriPrint(OBJECT *po)
{
INT i, j;
INT *vindex; /* Ptr to vertex index. */
VEC3 *vlist, *vptr; /* Ptr to vertex list. */
TRI *pt; /* Ptr to triangle data. */
ELEMENT *pe; /* Ptr to triangle element. */
pe = po->pelem;
fprintf(stderr, "\ttriangle: %ld triangles.\n", po->numelements);
for (i = 0; i < po->numelements; i++)
{
pt = (TRI *)pe->data;
fprintf(stderr, "\t\tVertices: 3 Plane eq: %f %f %f %f\n", pt->norm[0], pt->norm[1], pt->norm[2], pt->d);
vlist = pt->vptr;
vindex = pt->vindex;
for (j = 0; j < 3; j++)
{
vptr = vlist + (*vindex);
fprintf(stderr, "\t\t%f %f %f \n", (*vptr)[0], (*vptr)[1], (*vptr)[2]);
vindex++;
}
pe++;
}
}
/*
* NAME
* TriElementBoundBox - compute triangle element bounding box
*
* SYNOPSIS
* VOID TriElementBoundBox(pe, pt)
* ELEMENT *pe; // Ptr to triangle element.
* TRI *pt; // Ptr to triangle data.
*
* RETURNS
* Nothing.
*/
VOID TriElementBoundBox(ELEMENT *pe, TRI *pt)
{
INT i; /* Index. */
INT *vindex; /* Vertex index pointer. */
BBOX *pbb; /* Ptr to bounding box. */
VEC3 *vlist, *vptr; /* Vertex list pointer. */
REAL minx, maxx;
REAL miny, maxy;
REAL minz, maxz;
pbb = &(pe->bv);
minx = miny = minz = HUGE_REAL;
maxx = maxy = maxz = -HUGE_REAL;
vlist = pt->vptr;
vindex = pt->vindex;
for (i = 0; i < 3; i++)
{
vptr = vlist + (*vindex);
minx = Min(minx, (*vptr)[0]);
miny = Min(miny, (*vptr)[1]);
minz = Min(minz, (*vptr)[2]);
maxx = Max(maxx, (*vptr)[0]);
maxy = Max(maxy, (*vptr)[1]);
maxz = Max(maxz, (*vptr)[2]);
vindex++;
}
pbb->dnear[0] = minx;
pbb->dnear[1] = miny;
pbb->dnear[2] = minz;
pbb->dfar[0] = maxx;
pbb->dfar[1] = maxy;
pbb->dfar[2] = maxz;
}
/*
* NAME
* TriBoundBox - compute triangle object bounding box
*
* SYNOPSIS
* VOID TriBoundBox(po)
* OBJECT *po; // Ptr to triangle object.
*
* RETURNS
* Nothing.
*/
VOID TriBoundBox(OBJECT *po)
{
INT i;
TRI *pt; /* Ptr to triangle data. */
ELEMENT *pe; /* Ptr to triangle element. */
BBOX *pbb; /* Ptr to bounding box. */
REAL minx, maxx;
REAL miny, maxy;
REAL minz, maxz;
pe = po->pelem;
pbb = &(po->bv);
minx = miny = minz = HUGE_REAL;
maxx = maxy = maxz = -HUGE_REAL;
for (i = 0; i < po->numelements; i++)
{
pt = (TRI *)pe->data;
TriElementBoundBox(pe, pt);
minx = Min(minx, pe->bv.dnear[0]);
miny = Min(miny, pe->bv.dnear[1]);
minz = Min(minz, pe->bv.dnear[2]);
maxx = Max(maxx, pe->bv.dfar[0]);
maxy = Max(maxy, pe->bv.dfar[1]);
maxz = Max(maxz, pe->bv.dfar[2]);
pe++;
}
pbb->dnear[0] = minx;
pbb->dnear[1] = miny;
pbb->dnear[2] = minz;
pbb->dfar[0] = maxx;
pbb->dfar[1] = maxy;
pbb->dfar[2] = maxz;
}
/*
* NAME
* TriNormal - compute triangle unit normal at given point on the surface
*
* SYNOPSIS
* VOID TriNormal(hit, Pi, Ni)
* IRECORD *hit; // Ptr to intersection record.
* POINT Pi; // Ipoint.
* POINT Ni; // Normal.
*
* NOTES
* If no normal interpolation, the normal is the face normal. Otherwise,
* interpolate with the normal plane equation.
*
* RETURNS
* Nothing.
*/
VOID TriNormal(IRECORD *hit, POINT Pi, POINT Ni)
{
ELEMENT *pe;
TRI *pt; /* Ptr to triangle data. */
VEC3 *pn; /* Ptr to normal. */
VEC3 *n0, *n1, *n2;
/* Retrieve normal from hit triangle. */
pe = hit->pelem;
pt = (TRI *)pe->data;
pn = pt->nptr;
if (pt->norminterp)
{
if (pt->vorder == CLOCKWISE)
{
n0 = pn + pt->vindex[0];
n1 = pn + pt->vindex[1];
n2 = pn + pt->vindex[2];
}
else
{
n0 = pn + pt->vindex[0];
n1 = pn + pt->vindex[2];
n2 = pn + pt->vindex[1];
}
switch (pt->indx)
{
case X_NORM:
hit->b1 /= pt->norm[0];
hit->b2 /= pt->norm[0];
hit->b3 /= pt->norm[0];
break;
case Y_NORM:
hit->b1 /= pt->norm[1];
hit->b2 /= pt->norm[1];
hit->b3 /= pt->norm[1];
break;
case Z_NORM:
hit->b1 /= pt->norm[2];
hit->b2 /= pt->norm[2];
hit->b3 /= pt->norm[2];
break;
}
Ni[0] = hit->b1 * (*n0)[0] + hit->b2 * (*n1)[0] + hit->b3 * (*n2)[0];
Ni[1] = hit->b1 * (*n0)[1] + hit->b2 * (*n1)[1] + hit->b3 * (*n2)[1];
Ni[2] = hit->b1 * (*n0)[2] + hit->b2 * (*n1)[2] + hit->b3 * (*n2)[2];
VecNorm(Ni);
}
else
VecCopy(Ni, pt->norm);
}
/*
* NAME
* TriDataNormalize - normalize triangle data and bounding box
*
* SYNOPSIS
* VOID TriDataNormalize(po, normMat)
* OBJECT *po; // Ptr to triangle object.
* MATRIX normMat; // Normalization matrix.
*
* RETURNS
* Nothing.
*/
VOID TriDataNormalize(OBJECT *po, MATRIX normMat)
{
INT i;
POINT coord;
VEC3 *pv; /* Ptr to vertex list. */
TRI *pt; /* Ptr to triangle data. */
ELEMENT *pe; /* Ptr to triangle element. */
/* Normalize bounding box. */
pe = po->pelem;
NormalizeBoundBox(&po->bv, normMat);
/* Normalize vertex list. */
pt = (TRI *)pe->data;
pv = pt->vptr;
coord[0] = (*pv)[0];
coord[1] = (*pv)[1];
coord[2] = (*pv)[2];
coord[3] = 1.0;
/* Transform coordinate by xform matrix. */
while (coord[0] != HUGE_REAL && coord[1] != HUGE_REAL && coord[2] != HUGE_REAL)
{
VecMatMult(coord, normMat, coord);
(*pv)[0] = coord[0];
(*pv)[1] = coord[1];
(*pv)[2] = coord[2];
pv++;
coord[0] = (*pv)[0];
coord[1] = (*pv)[1];
coord[2] = (*pv)[2];
coord[3] = 1.0;
}
/* Normalize bounding boxes of object elements. */
for (i = 0; i < po->numelements; i++)
{
pt = (TRI *)pe->data;
NormalizeBoundBox(&pe->bv, normMat);
/* Find new d of plane equation. */
pv = pt->vptr + (*(pt->vindex));
pt->d = -(pt->norm[0]*(*pv)[0] + pt->norm[1]*(*pv)[1] + pt->norm[2]*(*pv)[2]);
pe++;
}
}
/*
* NAME
* TriPeIntersect - calculate intersection of ray with triangle
*
* SYNOPSIS
* INT TriPeIntersect(pr, pe, hit)
* RAY *pr; // Ptr to incident ray.
* ELEMENT *pe; // Triangle object
* IRECORD *hit; // Intersection record.
*
* NOTES
* Check first to see if ray is parallel to plane or if the intersection
* point with the plane is behind the eye.
*
* RETURNS
* The number of intersection points.
*/
INT TriPeIntersect(RAY *pr, ELEMENT *pe, IRECORD *hit)
{
REAL Rd_dot_Pn; /* Polygon normal dot ray direction. */
REAL Ro_dot_Pn; /* Polygon normal dot ray origin. */
REAL q1, q2;
REAL tval; /* Intersection t distance value. */
VEC3 *v1, *v2, *v3; /* Vertex list pointers. */
VEC3 e1, e2, e3; /* Edge vectors. */
TRI *pt; /* Ptr to triangle data. */
pt = (TRI *)pe->data;
Rd_dot_Pn = VecDot(pt->norm, pr->D);
if (ABS(Rd_dot_Pn) < RAYEPS) /* Ray is parallel. */
return (0);
Ro_dot_Pn = VecDot(pt->norm, pr->P);
tval = -(pt->d + Ro_dot_Pn)/Rd_dot_Pn; /* Intersection distance. */
if (tval < RAYEPS) /* Intersects behind ray. */
return (0);
/*
* This algorithm works for vertices in counter-clockwise order,
* so reverse the vertices if they are clockwise.
*/
v1 = pt->vptr + pt->vindex[0]; /* Compute first vertex pointer. */
if (pt->vorder == COUNTER_CLOCKWISE)
{
v2 = pt->vptr + pt->vindex[2];
v3 = pt->vptr + pt->vindex[1];
}
else
{
v2 = pt->vptr + pt->vindex[1];
v3 = pt->vptr + pt->vindex[2];
}
e1[0] = (*v2)[0] - (*v1)[0];
e1[1] = (*v2)[1] - (*v1)[1];
e1[2] = (*v2)[2] - (*v1)[2];
e2[0] = (*v3)[0] - (*v2)[0];
e2[1] = (*v3)[1] - (*v2)[1];
e2[2] = (*v3)[2] - (*v2)[2];
e3[0] = (*v1)[0] - (*v3)[0];
e3[1] = (*v1)[1] - (*v3)[1];
e3[2] = (*v1)[2] - (*v3)[2];
/* Triangle containment. */
switch (pt->indx)
{
case X_NORM:
q1 = pr->P[1] + tval*pr->D[1];
q2 = pr->P[2] + tval*pr->D[2];
hit->b1 = e2[1] * (q2 - (*v2)[2]) - e2[2] * (q1 - (*v2)[1]);
if (!INSIDE(hit->b1, pt->norm[0]))
return (0);
hit->b2 = e3[1] * (q2 - (*v3)[2]) - e3[2] * (q1 - (*v3)[1]);
if (!INSIDE(hit->b2, pt->norm[0]))
return (0);
hit->b3 = e1[1] * (q2 - (*v1)[2]) - e1[2] * (q1 - (*v1)[1]);
if (!INSIDE(hit->b3, pt->norm[0]))
return (0);
break;
case Y_NORM:
q1 = pr->P[0] + tval*pr->D[0];
q2 = pr->P[2] + tval*pr->D[2];
hit->b1 = e2[2] * (q1 - (*v2)[0]) - e2[0] * (q2 - (*v2)[2]);
if (!INSIDE(hit->b1, pt->norm[1]))
return (0);
hit->b2 = e3[2] * (q1 - (*v3)[0]) - e3[0] * (q2 - (*v3)[2]);
if (!INSIDE(hit->b2, pt->norm[1]))
return (0);
hit->b3 = e1[2] * (q1 - (*v1)[0]) - e1[0] * (q2 - (*v1)[2]);
if (!INSIDE(hit->b3, pt->norm[1]))
return (0);
break;
case Z_NORM:
q1 = pr->P[0] + tval*pr->D[0];
q2 = pr->P[1] + tval*pr->D[1];
hit->b1 = e2[0] * (q2 - (*v2)[1]) - e2[1] * (q1 - (*v2)[0]);
if (!INSIDE(hit->b1, pt->norm[2]))
return (0);
hit->b2 = e3[0] * (q2 - (*v3)[1]) - e3[1] * (q1 - (*v3)[0]);
if (!INSIDE(hit->b2, pt->norm[2]))
return (0);
hit->b3 = e1[0] * (q2 - (*v1)[1]) - e1[1] * (q1 - (*v1)[0]);
if (!INSIDE(hit->b3, pt->norm[2]))
return (0);
break;
}
IsectAdd(hit, tval, pe);
return (1);
}
/*
* NAME
* TriIntersect - call triangle object intersection routine
*
* SYNOPSIS
* INT TriIntersect(pr, po, hit)
* RAY *pr; // Ptr to incident ray.
* OBJECT *po; // Ptr to triangle object.
* IRECORD *hit; // Intersection record.
*
* RETURNS
* The number of intersections found.
*/
INT TriIntersect(RAY *pr, OBJECT *po, IRECORD *hit)
{
INT i;
INT nhits; /* # hits in polyhedra. */
ELEMENT *pe; /* Ptr to triangle element. */
IRECORD newhit; /* Hit list. */
/* Traverse triangle list to find intersections. */
nhits = 0;
pe = po->pelem;
hit[0].t = HUGE_REAL;
for (i = 0; i < po->numelements; i++)
{
if (TriPeIntersect(pr, pe, &newhit))
{
nhits++;
if (newhit.t < hit[0].t)
hit[0] = newhit;
}
pe++;
}
return (nhits);
}
/*
* NAME
* TriTransform - transform triangle object by a transformation matrix
*
* SYNOPSIS
* VOID TriTransform(po, xtrans, xinvT)
* OBJECT *po; // Ptr to triangle object.
* MATRIX xtrans; // Transformation matrix.
* MATRIX xinvT; // Transpose of inverse matrix.
*
* NOTES
* Routine must:
* - transform face normals
* - transform vertices
* - calculate plane equation d variables
*
* RETURNS
* Nothing.
*/
VOID TriTransform(OBJECT *po, MATRIX xtrans, MATRIX xinvT)
{
INT i; /* Indices. */
INT numelems; /* # of elements. */
INT *vindex; /* Vertex index pointer. */
VEC3 *vptr, *vp; /* Vertex list pointers. */
VEC3 *nptr, *np; /* Normal list pointers. */
VEC3 *vp1, *vp2, *vp3;
VEC3 vec1, vec2;
VEC4 pnorm;
VEC4 norm, coord; /* Transform 4 vectors. */
TRI *pt; /* Ptr to triangle data. */
ELEMENT *pe; /* Ptr to triangle element. */
pe = po->pelem;
numelems = po->numelements;
/* Get vertex list address and transform vertices. */
pt = (TRI *)pe->data;
vptr = pt->vptr;
nptr = pt->nptr;
coord[0] = (*vptr)[0];
coord[1] = (*vptr)[1];
coord[2] = (*vptr)[2];
coord[3] = 1.0;
while (coord[0] != HUGE_REAL && coord[1] != HUGE_REAL && coord[2] != HUGE_REAL)
{
/* Transform coordinate by xform matrix. */
VecMatMult(coord, xtrans, coord);
(*vptr)[0] = coord[0];
(*vptr)[1] = coord[1];
(*vptr)[2] = coord[2];
vptr++;
coord[0] = (*vptr)[0];
coord[1] = (*vptr)[1];
coord[2] = (*vptr)[2];
coord[3] = 1.0;
/* Transform normals. */
norm[0] = (*nptr)[0];
norm[1] = (*nptr)[1];
norm[2] = (*nptr)[2];
norm[3] = 0.0;
VecMatMult(norm, xinvT, norm);
VecNorm(norm);
(*nptr)[0] = norm[0];
(*nptr)[1] = norm[1];
(*nptr)[2] = norm[2];
nptr++;
}
/* Transform triangle list. */
for (i = 0; i < numelems; i++)
{
pt = (TRI *)pe->data;
vindex = pt->vindex;
vptr = pt->vptr;
vp1 = vptr + (*vindex);
vindex++;
vp2 = vptr + (*vindex);
VecSub(vec1, (*vp2), (*vp1));
vindex++;
vp3 = vptr + (*vindex);
VecSub(vec2, (*vp3), (*vp1));
VecCross(pt->norm, vec1, vec2);
/* Calculate plane equation variable D. */
vp = pt->vptr + *(pt->vindex);
pt->d = -(pt->norm[0]*(*vp)[0] + pt->norm[1]*(*vp)[1] + pt->norm[2]*(*vp)[2]);
if (pt->norminterp)
{
vindex = pt->vindex;
np = pt->nptr + (*vindex);
VecCopy(pnorm, pt->norm);
VecNorm(pnorm);
if (VecDot(pnorm, (*np)) >= 0.0)
pt->vorder = CLOCKWISE;
else
{
pt->vorder = COUNTER_CLOCKWISE;
VecScale(pt->norm, -1.0, pt->norm);
pt->d = -pt->d;
}
}
/* Set best axis projection. */
norm[0] = ABS(pt->norm[0]);
norm[1] = ABS(pt->norm[1]);
norm[2] = ABS(pt->norm[2]);
if (norm[0] >= norm[1] && norm[0] >= norm[2])
pt->indx = X_NORM;
else
if (norm[1] >= norm[0] && norm[1] >= norm[2])
pt->indx = Y_NORM;
else
pt->indx = Z_NORM;
pe++;
}
}
/*
* NAME
* TriRead - read triangle object data from file
*
* SYNOPSIS
* VOID TriRead(po, pf)
* OBJECT *po; // Ptr to triangle object.
* FILE *pf; // Ptr to file.
*
* RETURNS
* Nothing.
*/
VOID TriRead(OBJECT *po, FILE *pf)
{
INT i; /* Indices. */
INT instat; /* Read status. */
INT totalverts; /* Total # of vertices in tri mesh. */
CHAR normstr[5]; /* Face/vertex normal flag string. */
BOOL pnormals; /* Face normals present? */
BOOL vnormals; /* Vertex normals present? */
VEC3 *vlist, *vptr; /* Ptr to vertex list. */
VEC3 *nlist, *nptr; /* Ptr to normal list. */
TRI *pt; /* Ptr to triangle data. */
ELEMENT *pe; /* Ptr to triangle element. */
pe = po->pelem;
/* Allocate space for object data. */
instat = fscanf(pf, "%ld", &totalverts);
if (instat != 1)
{
printf("Error in TriRead: totalverts.\n");
exit(-1);
}
pt = GlobalMalloc(sizeof(TRI )*po->numelements, "tri.c");
vlist = GlobalMalloc(sizeof(VEC3)*(totalverts + 1), "tri.c");
nlist = GlobalMalloc(sizeof(VEC3)*totalverts, "tri.c");
vptr = vlist;
nptr = nlist;
/* Are triangle face normals supplied? */
instat = fscanf(pf, "%s\n", normstr);
if (instat != 1)
{
printf("Error in TriRead: face normal indicator.\n");
exit(-1);
}
pnormals = (normstr[2] == 'y' ? TRUE : FALSE);
/* Are vertex normal supplied? */
instat = fscanf(pf, "%s\n", normstr);
if (instat != 1)
{
printf("Error in TriRead: vertex normal indicator.\n");
exit(-1);
}
vnormals = (normstr[2] == 'y' ? TRUE : FALSE);
/* Read vertex list. */
for (i = 0; i < totalverts; i++)
{
instat = fscanf(pf, "%lf %lf %lf", &(*vptr)[0], &(*vptr)[1], &(*vptr)[2]);
if (instat != 3)
{
printf("Error in TriRead: vertex %ld.\n", i);
exit(-1);
}
if (vnormals)
{
instat = fscanf(pf, "%lf %lf %lf", &(*nptr)[0], &(*nptr)[1], &(*nptr)[2]);
if (instat != 3)
{
printf("Error in TriRead: vertex normal %ld.\n", i);
exit(-1);
}
nptr++;
}
vptr++;
}
(*vptr)[0] = HUGE_REAL;
(*vptr)[1] = HUGE_REAL;
(*vptr)[2] = HUGE_REAL;
/* Read triangle list. */
for (i = 0; i < po->numelements; i++)
{
if (pnormals)
{
instat = fscanf(pf, " %lf %lf %lf", &(pt->norm[0]), &(pt->norm[1]), &(pt->norm[2]));
if (instat != 3)
{
printf("Error in TriRead: face normal %ld.\n", i);
exit(-1);
}
}
pt->vptr = vlist;
pt->nptr = nlist;
pt->norminterp = vnormals;
instat = fscanf(pf, "%ld %ld %ld", &(pt->vindex[0]), &(pt->vindex[1]), &(pt->vindex[2]));
if (instat != 3)
{
printf("Error in TriRead: vertex index %ld.\n", i);
exit(-1);
}
pe->data = (CHAR *)pt;
pe->parent = po;
TriElementBoundBox(pe, pt);
pt++;
pe++;
}
/* Free normal storage if not interpolating. */
if (!vnormals)
GlobalFree(nlist);
}