gem5/ext/mcpat/interconnect.cc
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

231 lines
8.4 KiB
C++

/*****************************************************************************
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <cassert>
#include <iostream>
#include "basic_components.h"
#include "interconnect.h"
#include "wire.h"
double Interconnect::width_scaling_threshold = 3.0;
Interconnect::Interconnect(XMLNode* _xml_data, string name_,
enum Device_ty device_ty_, double base_w,
double base_h, int data_w,
double len,
const InputParameter *configure_interface,
int start_wiring_level_, double _clockRate,
bool pipelinable_, double route_over_perc_,
bool opt_local_, enum Core_type core_ty_,
enum Wire_type wire_model,
double width_s, double space_s,
TechnologyParameter::DeviceType *dt)
: McPATComponent(_xml_data), device_ty(device_ty_), in_rise_time(0),
out_rise_time(0), base_width(base_w), base_height(base_h),
data_width(data_w), wt(wire_model), width_scaling(width_s),
space_scaling(space_s), start_wiring_level(start_wiring_level_),
length(len), opt_local(opt_local_), core_ty(core_ty_),
pipelinable(pipelinable_), route_over_perc(route_over_perc_),
deviceType(dt) {
name = name_;
clockRate = _clockRate;
l_ip = *configure_interface;
local_result = init_interface(&l_ip, name);
max_unpipelined_link_delay = 0;
min_w_nmos = g_tp.min_w_nmos_;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
latency = l_ip.latency;
throughput = l_ip.throughput;
latency_overflow = false;
throughput_overflow = false;
if (pipelinable == false) {
//Non-pipelinable wires, such as bypass logic, care latency
calcWireData();
if (opt_for_clk && opt_local) {
while (delay > latency &&
width_scaling < width_scaling_threshold) {
width_scaling *= 2;
space_scaling *= 2;
Wire winit(width_scaling, space_scaling);
calcWireData();
}
if (delay > latency) {
latency_overflow = true;
}
}
} else {
//Pipelinable wires, such as bus, does not care latency but throughput
calcWireData();
if (opt_for_clk && opt_local) {
while (delay > throughput &&
width_scaling < width_scaling_threshold) {
width_scaling *= 2;
space_scaling *= 2;
Wire winit(width_scaling, space_scaling);
calcWireData();
}
if (delay > throughput) {
// insert pipeline stages
num_pipe_stages = (int)ceil(delay / throughput);
assert(num_pipe_stages > 0);
delay = delay / num_pipe_stages + num_pipe_stages * 0.05 * delay;
}
}
}
power_bit = power;
power.readOp.dynamic *= data_width;
power.readOp.leakage *= data_width;
power.readOp.gate_leakage *= data_width;
area.set_area(area.get_area()*data_width);
no_device_under_wire_area.h *= data_width;
if (latency_overflow == true) {
cout << "Warning: " << name
<< " wire structure cannot satisfy latency constraint." << endl;
}
assert(power.readOp.dynamic > 0);
assert(power.readOp.leakage > 0);
assert(power.readOp.gate_leakage > 0);
double long_channel_device_reduction =
longer_channel_device_reduction(device_ty, core_ty);
double sckRation = g_tp.sckt_co_eff;
power.readOp.dynamic *= sckRation;
power.writeOp.dynamic *= sckRation;
power.searchOp.dynamic *= sckRation;
power.readOp.longer_channel_leakage =
power.readOp.leakage * long_channel_device_reduction;
//Only global wires has the option to choose whether routing over or not
if (pipelinable)
area.set_area(area.get_area() * route_over_perc +
no_device_under_wire_area.get_area() *
(1 - route_over_perc));
Wire wreset();
}
void
Interconnect::calcWireData() {
Wire *wtemp1 = 0;
wtemp1 = new Wire(wt, length, 1, width_scaling, space_scaling);
delay = wtemp1->delay;
power.readOp.dynamic = wtemp1->power.readOp.dynamic;
power.readOp.leakage = wtemp1->power.readOp.leakage;
power.readOp.gate_leakage = wtemp1->power.readOp.gate_leakage;
area.set_area(wtemp1->area.get_area());
no_device_under_wire_area.h = (wtemp1->wire_width + wtemp1->wire_spacing);
no_device_under_wire_area.w = length;
if (wtemp1)
delete wtemp1;
}
void
Interconnect::computeEnergy() {
double pppm_t[4] = {1, 1, 1, 1};
// Compute TDP
power_t.reset();
set_pppm(pppm_t, int_params.active_ports * int_stats.duty_cycle,
int_params.active_ports, int_params.active_ports,
int_params.active_ports * int_stats.duty_cycle);
power_t = power * pppm_t;
rt_power.reset();
set_pppm(pppm_t, int_stats.accesses, int_params.active_ports,
int_params.active_ports, int_stats.accesses);
rt_power = power * pppm_t;
output_data.peak_dynamic_power = power_t.readOp.dynamic * clockRate;
output_data.subthreshold_leakage_power = power_t.readOp.leakage;
output_data.gate_leakage_power = power_t.readOp.gate_leakage;
output_data.runtime_dynamic_energy = rt_power.readOp.dynamic;
}
void
Interconnect::computeArea() {
output_data.area = area.get_area() / 1e6;
}
void
Interconnect::set_params_stats(double active_ports,
double duty_cycle, double accesses) {
int_params.active_ports = active_ports;
int_stats.duty_cycle = duty_cycle;
int_stats.accesses = accesses;
}
void Interconnect::leakage_feedback(double temperature) {
l_ip.temp = (unsigned int)round(temperature/10.0)*10;
uca_org_t init_result = init_interface(&l_ip, name); // init_result is dummy
calcWireData();
power_bit = power;
power.readOp.dynamic *= data_width;
power.readOp.leakage *= data_width;
power.readOp.gate_leakage *= data_width;
assert(power.readOp.dynamic > 0);
assert(power.readOp.leakage > 0);
assert(power.readOp.gate_leakage > 0);
double long_channel_device_reduction =
longer_channel_device_reduction(device_ty,core_ty);
double sckRation = g_tp.sckt_co_eff;
power.readOp.dynamic *= sckRation;
power.writeOp.dynamic *= sckRation;
power.searchOp.dynamic *= sckRation;
power.readOp.longer_channel_leakage =
power.readOp.leakage*long_channel_device_reduction;
}