gem5/ext/mcpat/cacti/htree2.cc
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

695 lines
28 KiB
C++

/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <cassert>
#include <iostream>
#include "htree2.h"
#include "wire.h"
Htree2::Htree2(
enum Wire_type wire_model, double mat_w, double mat_h,
int a_bits, int d_inbits, int search_data_in, int d_outbits,
int search_data_out, int bl, int wl, enum Htree_type htree_type,
bool uca_tree_, bool search_tree_, TechnologyParameter::DeviceType *dt)
: in_rise_time(0), out_rise_time(0),
tree_type(htree_type), mat_width(mat_w), mat_height(mat_h),
add_bits(a_bits), data_in_bits(d_inbits),
search_data_in_bits(search_data_in), data_out_bits(d_outbits),
search_data_out_bits(search_data_out), ndbl(bl), ndwl(wl),
uca_tree(uca_tree_), search_tree(search_tree_), wt(wire_model),
deviceType(dt) {
assert(ndbl >= 2 && ndwl >= 2);
// if (ndbl == 1 && ndwl == 1)
// {
// delay = 0;
// power.readOp.dynamic = 0;
// power.readOp.leakage = 0;
// area.w = mat_w;
// area.h = mat_h;
// return;
// }
// if (ndwl == 1) ndwl++;
// if (ndbl == 1) ndbl++;
max_unpipelined_link_delay = 0; //TODO
min_w_nmos = g_tp.min_w_nmos_;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
switch (htree_type) {
case Add_htree:
wire_bw = init_wire_bw = add_bits;
in_htree();
break;
case Data_in_htree:
wire_bw = init_wire_bw = data_in_bits;
in_htree();
break;
case Data_out_htree:
wire_bw = init_wire_bw = data_out_bits;
out_htree();
break;
case Search_in_htree:
wire_bw = init_wire_bw = search_data_in_bits;//in_search_tree is broad cast, out_htree is not.
in_htree();
break;
case Search_out_htree:
wire_bw = init_wire_bw = search_data_out_bits;
out_htree();
break;
default:
assert(0);
break;
}
power_bit = power;
power.readOp.dynamic *= init_wire_bw;
assert(power.readOp.dynamic >= 0);
assert(power.readOp.leakage >= 0);
}
// nand gate sizing calculation
void Htree2::input_nand(double s1, double s2, double l_eff) {
Wire w1(wt, l_eff);
double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
// input capacitance of a repeater = input capacitance of nand.
double nsize = s1 * (1 + pton_size) / (2 + pton_size);
nsize = (nsize < 1) ? 1 : nsize;
double tc = 2 * tr_R_on(nsize * min_w_nmos, NCH, 1) *
(drain_C_(nsize * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) * 2 +
2 * gate_C(s2 * (min_w_nmos + min_w_pmos), 0));
delay += horowitz(w1.out_rise_time, tc,
deviceType->Vth / deviceType->Vdd, deviceType->Vth /
deviceType->Vdd, RISE);
power.readOp.dynamic += 0.5 *
(2 * drain_C_(pton_size * nsize * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(nsize * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ 2 * gate_C(s2 * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd;
power.searchOp.dynamic += 0.5 *
(2 * drain_C_(pton_size * nsize * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(nsize * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ 2 * gate_C(s2 * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd * wire_bw ;
power.readOp.leakage += (wire_bw *
cmos_Isub_leakage(min_w_nmos * (nsize * 2),
min_w_pmos * nsize * 2, 2,
nand)) * deviceType->Vdd;
power.readOp.gate_leakage += (wire_bw *
cmos_Ig_leakage(min_w_nmos * (nsize * 2),
min_w_pmos * nsize * 2, 2,
nand)) * deviceType->Vdd;
}
// tristate buffer model consisting of not, nand, nor, and driver transistors
void Htree2::output_buffer(double s1, double s2, double l_eff) {
Wire w1(wt, l_eff);
double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
// input capacitance of repeater = input capacitance of nand + nor.
double size = s1 * (1 + pton_size) / (2 + pton_size + 1 + 2 * pton_size);
double s_eff = //stage eff of a repeater in a wire
(gate_C(s2 * (min_w_nmos + min_w_pmos), 0) + w1.wire_cap(l_eff * 1e-6,
true)) /
gate_C(s2 * (min_w_nmos + min_w_pmos), 0);
double tr_size = gate_C(s1 * (min_w_nmos + min_w_pmos), 0) * 1 / 2 /
(s_eff * gate_C(min_w_pmos, 0));
size = (size < 1) ? 1 : size;
double res_nor = 2 * tr_R_on(size * min_w_pmos, PCH, 1);
double res_ptrans = tr_R_on(tr_size * min_w_nmos, NCH, 1);
double cap_nand_out =
drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) * 2 +
gate_C(tr_size * min_w_pmos, 0);
double cap_ptrans_out = 2 *
(drain_C_(tr_size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(tr_size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)) +
gate_C(s1 * (min_w_nmos + min_w_pmos), 0);
double tc = res_nor * cap_nand_out + (res_nor + res_ptrans) * cap_ptrans_out;
delay += horowitz(w1.out_rise_time, tc,
deviceType->Vth / deviceType->Vdd, deviceType->Vth /
deviceType->Vdd, RISE);
//nand
power.readOp.dynamic += 0.5 *
(2 * drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
gate_C(tr_size * (min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd;
power.searchOp.dynamic += 0.5 *
(2 * drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
gate_C(tr_size * (min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd * init_wire_bw;
//not
power.readOp.dynamic += 0.5 *
(drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ gate_C(size * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd;
power.searchOp.dynamic += 0.5 *
(drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ gate_C(size * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd * init_wire_bw;
//nor
power.readOp.dynamic += 0.5 *
(drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ 2 * drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ gate_C(tr_size * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd;
power.searchOp.dynamic += 0.5 *
(drain_C_(size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ 2 * drain_C_(size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ gate_C(tr_size * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd * init_wire_bw;
//output transistor
power.readOp.dynamic += 0.5 *
((drain_C_(tr_size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(tr_size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)) * 2
+ gate_C(s1 * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd;
power.searchOp.dynamic += 0.5 *
((drain_C_(tr_size * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ drain_C_(tr_size * min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)) * 2
+ gate_C(s1 * (min_w_nmos + min_w_pmos), 0)) *
deviceType->Vdd * deviceType->Vdd * init_wire_bw;
if (uca_tree) {
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * tr_size * 2, min_w_pmos * tr_size *
2, 1, inv) *
deviceType->Vdd * wire_bw;/*inverter + output tr*/
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nand) * deviceType->Vdd * wire_bw;//nand
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nor) * deviceType->Vdd * wire_bw;//nor
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * tr_size * 2, min_w_pmos * tr_size * 2,
1, inv) *
deviceType->Vdd * wire_bw;/*inverter + output tr*/
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nand) * deviceType->Vdd * wire_bw;//nand
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nor) * deviceType->Vdd * wire_bw;//nor
} else {
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * tr_size * 2, min_w_pmos * tr_size *
2, 1, inv) *
deviceType->Vdd * wire_bw;/*inverter + output tr*/
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nand) * deviceType->Vdd * wire_bw;//nand
power.readOp.leakage +=
cmos_Isub_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nor) * deviceType->Vdd * wire_bw;//nor
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * tr_size * 2, min_w_pmos * tr_size * 2,
1, inv) *
deviceType->Vdd * wire_bw;/*inverter + output tr*/
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nand) * deviceType->Vdd * wire_bw;//nand
power.readOp.gate_leakage +=
cmos_Ig_leakage(min_w_nmos * size * 3, min_w_pmos * size * 3, 2,
nor) * deviceType->Vdd * wire_bw;//nor
}
}
/* calculates the input h-tree delay/power
* A nand gate is used at each node to
* limit the signal
* The area of an unbalanced htree (rows != columns)
* depends on how data is traversed.
* In the following function, if ( no. of rows < no. of columns),
* then data first traverse in excess hor. links until vertical
* and horizontal nodes are same.
* If no. of rows is bigger, then data traverse in
* a hor. link followed by a ver. link in a repeated
* fashion (similar to a balanced tree) until there are no
* hor. links left. After this it goes through the remaining vertical
* links.
*/
void
Htree2::in_htree() {
//temp var
double s1 = 0, s2 = 0, s3 = 0;
double l_eff = 0;
Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
double len = 0, ht = 0;
int option = 0;
int h = (int) _log2(ndwl / 2); // horizontal nodes
int v = (int) _log2(ndbl / 2); // vertical nodes
double len_temp;
double ht_temp;
if (uca_tree) {
//Sheng: this computation do not consider the wires that route from
//edge to middle.
ht_temp = (mat_height * ndbl / 2 +
/* since uca_tree models interbank tree,
mat_height => bank height */
((add_bits + data_in_bits + data_out_bits +
(search_data_in_bits + search_data_out_bits)) *
g_tp.wire_outside_mat.pitch *
2 * (1 - pow(0.5, h)))) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits + data_in_bits + data_out_bits +
(search_data_in_bits + search_data_out_bits)) *
g_tp.wire_outside_mat.pitch *
2 * (1 - pow(0.5, v)))) / 2;
} else {
if (ndwl == ndbl) {
ht_temp = ((mat_height * ndbl / 2) +
((add_bits + (search_data_in_bits +
search_data_out_bits)) * (ndbl / 2 - 1) *
g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * h)
) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits + (search_data_in_bits +
search_data_out_bits)) * (ndwl / 2 - 1) *
g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * v)) / 2;
} else if (ndwl > ndbl) {
double excess_part = (_log2(ndwl / 2) - _log2(ndbl / 2));
ht_temp = ((mat_height * ndbl / 2) +
((add_bits + + (search_data_in_bits +
search_data_out_bits)) *
((ndbl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
(data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch *
(2 * (1 - pow(0.5, h - v)) + pow(0.5, v - h) * v)) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
(ndwl / 2 - 1) * g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * v)) / 2;
} else {
double excess_part = (_log2(ndbl / 2) - _log2(ndwl / 2));
ht_temp = ((mat_height * ndbl / 2) +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
((ndwl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * h)
) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
((ndwl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
(data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch *
(h + 2 * (1 - pow(0.5, v - h)))) / 2;
}
}
area.h = ht_temp * 2;
area.w = len_temp * 2;
delay = 0;
power.readOp.dynamic = 0;
power.readOp.leakage = 0;
power.searchOp.dynamic = 0;
len = len_temp;
ht = ht_temp / 2;
while (v > 0 || h > 0) {
if (wtemp1) delete wtemp1;
if (wtemp2) delete wtemp2;
if (wtemp3) delete wtemp3;
if (h > v) {
//the iteration considers only one horizontal link
wtemp1 = new Wire(wt, len); // hor
wtemp2 = new Wire(wt, len / 2); // ver
len_temp = len;
len /= 2;
wtemp3 = 0;
h--;
option = 0;
} else if (v > 0 && h > 0) {
//considers one horizontal link and one vertical link
wtemp1 = new Wire(wt, len); // hor
wtemp2 = new Wire(wt, ht); // ver
wtemp3 = new Wire(wt, len / 2); // next hor
len_temp = len;
ht_temp = ht;
len /= 2;
ht /= 2;
v--;
h--;
option = 1;
} else {
// considers only one vertical link
assert(h == 0);
wtemp1 = new Wire(wt, ht); // ver
wtemp2 = new Wire(wt, ht / 2); // hor
ht_temp = ht;
ht /= 2;
wtemp3 = 0;
v--;
option = 2;
}
delay += wtemp1->delay;
power.readOp.dynamic += wtemp1->power.readOp.dynamic;
power.searchOp.dynamic += wtemp1->power.readOp.dynamic * wire_bw;
power.readOp.leakage += wtemp1->power.readOp.leakage * wire_bw;
power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage * wire_bw;
if ((uca_tree == false && option == 2) || search_tree == true) {
wire_bw *= 2; // wire bandwidth doubles only for vertical branches
}
if (uca_tree == false) {
if (len_temp > wtemp1->repeater_spacing) {
s1 = wtemp1->repeater_size;
l_eff = wtemp1->repeater_spacing;
} else {
s1 = (len_temp / wtemp1->repeater_spacing) *
wtemp1->repeater_size;
l_eff = len_temp;
}
if (ht_temp > wtemp2->repeater_spacing) {
s2 = wtemp2->repeater_size;
} else {
s2 = (len_temp / wtemp2->repeater_spacing) *
wtemp2->repeater_size;
}
// first level
input_nand(s1, s2, l_eff);
}
if (option != 1) {
continue;
}
// second level
delay += wtemp2->delay;
power.readOp.dynamic += wtemp2->power.readOp.dynamic;
power.searchOp.dynamic += wtemp2->power.readOp.dynamic * wire_bw;
power.readOp.leakage += wtemp2->power.readOp.leakage * wire_bw;
power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage * wire_bw;
if (uca_tree) {
power.readOp.leakage += (wtemp2->power.readOp.leakage * wire_bw);
power.readOp.gate_leakage +=
wtemp2->power.readOp.gate_leakage * wire_bw;
} else {
power.readOp.leakage += (wtemp2->power.readOp.leakage * wire_bw);
power.readOp.gate_leakage +=
wtemp2->power.readOp.gate_leakage * wire_bw;
wire_bw *= 2;
if (ht_temp > wtemp3->repeater_spacing) {
s3 = wtemp3->repeater_size;
l_eff = wtemp3->repeater_spacing;
} else {
s3 = (len_temp / wtemp3->repeater_spacing) *
wtemp3->repeater_size;
l_eff = ht_temp;
}
input_nand(s2, s3, l_eff);
}
}
if (wtemp1) delete wtemp1;
if (wtemp2) delete wtemp2;
if (wtemp3) delete wtemp3;
}
/* a tristate buffer is used to handle fan-ins
* The area of an unbalanced htree (rows != columns)
* depends on how data is traversed.
* In the following function, if ( no. of rows < no. of columns),
* then data first traverse in excess hor. links until vertical
* and horizontal nodes are same.
* If no. of rows is bigger, then data traverse in
* a hor. link followed by a ver. link in a repeated
* fashion (similar to a balanced tree) until there are no
* hor. links left. After this it goes through the remaining vertical
* links.
*/
void Htree2::out_htree() {
//temp var
double s1 = 0, s2 = 0, s3 = 0;
double l_eff = 0;
Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
double len = 0, ht = 0;
int option = 0;
int h = (int) _log2(ndwl / 2);
int v = (int) _log2(ndbl / 2);
double len_temp;
double ht_temp;
if (uca_tree) {
ht_temp = (mat_height * ndbl / 2 +
/* since uca_tree models interbank tree,
mat_height => bank height */
((add_bits + data_in_bits + data_out_bits +
(search_data_in_bits + search_data_out_bits)) *
g_tp.wire_outside_mat.pitch *
2 * (1 - pow(0.5, h)))) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits + data_in_bits + data_out_bits +
(search_data_in_bits + search_data_out_bits)) *
g_tp.wire_outside_mat.pitch *
2 * (1 - pow(0.5, v)))) / 2;
} else {
if (ndwl == ndbl) {
ht_temp = ((mat_height * ndbl / 2) +
((add_bits + (search_data_in_bits +
search_data_out_bits)) *
(ndbl / 2 - 1) * g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * h)
) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits + (search_data_in_bits +
search_data_out_bits)) * (ndwl / 2 - 1) *
g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * v)) / 2;
} else if (ndwl > ndbl) {
double excess_part = (_log2(ndwl / 2) - _log2(ndbl / 2));
ht_temp = ((mat_height * ndbl / 2) +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
((ndbl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
(data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch *
(2 * (1 - pow(0.5, h - v)) + pow(0.5, v - h) * v)) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
(ndwl / 2 - 1) * g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * v)) / 2;
} else {
double excess_part = (_log2(ndbl / 2) - _log2(ndwl / 2));
ht_temp = ((mat_height * ndbl / 2) +
((add_bits +
(search_data_in_bits + search_data_out_bits)) *
((ndwl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
((data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch * h)
) / 2;
len_temp = (mat_width * ndwl / 2 +
((add_bits + (search_data_in_bits +
search_data_out_bits)) *
((ndwl / 2 - 1) + excess_part) *
g_tp.wire_outside_mat.pitch) +
(data_in_bits + data_out_bits) *
g_tp.wire_outside_mat.pitch *
(h + 2 * (1 - pow(0.5, v - h)))) / 2;
}
}
area.h = ht_temp * 2;
area.w = len_temp * 2;
delay = 0;
power.readOp.dynamic = 0;
power.readOp.leakage = 0;
power.readOp.gate_leakage = 0;
//cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
len = len_temp;
ht = ht_temp / 2;
while (v > 0 || h > 0) { //finds delay/power of each link in the tree
if (wtemp1) delete wtemp1;
if (wtemp2) delete wtemp2;
if (wtemp3) delete wtemp3;
if (h > v) {
//the iteration considers only one horizontal link
wtemp1 = new Wire(wt, len); // hor
wtemp2 = new Wire(wt, len / 2); // ver
len_temp = len;
len /= 2;
wtemp3 = 0;
h--;
option = 0;
} else if (v > 0 && h > 0) {
//considers one horizontal link and one vertical link
wtemp1 = new Wire(wt, len); // hor
wtemp2 = new Wire(wt, ht); // ver
wtemp3 = new Wire(wt, len / 2); // next hor
len_temp = len;
ht_temp = ht;
len /= 2;
ht /= 2;
v--;
h--;
option = 1;
} else {
// considers only one vertical link
assert(h == 0);
wtemp1 = new Wire(wt, ht); // hor
wtemp2 = new Wire(wt, ht / 2); // ver
ht_temp = ht;
ht /= 2;
wtemp3 = 0;
v--;
option = 2;
}
delay += wtemp1->delay;
power.readOp.dynamic += wtemp1->power.readOp.dynamic;
power.searchOp.dynamic += wtemp1->power.readOp.dynamic * init_wire_bw;
power.readOp.leakage += wtemp1->power.readOp.leakage * wire_bw;
power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage * wire_bw;
if ((uca_tree == false && option == 2) || search_tree == true) {
wire_bw *= 2;
}
if (uca_tree == false) {
if (len_temp > wtemp1->repeater_spacing) {
s1 = wtemp1->repeater_size;
l_eff = wtemp1->repeater_spacing;
} else {
s1 = (len_temp / wtemp1->repeater_spacing) *
wtemp1->repeater_size;
l_eff = len_temp;
}
if (ht_temp > wtemp2->repeater_spacing) {
s2 = wtemp2->repeater_size;
} else {
s2 = (len_temp / wtemp2->repeater_spacing) *
wtemp2->repeater_size;
}
// first level
output_buffer(s1, s2, l_eff);
}
if (option != 1) {
continue;
}
// second level
delay += wtemp2->delay;
power.readOp.dynamic += wtemp2->power.readOp.dynamic;
power.searchOp.dynamic += wtemp2->power.readOp.dynamic * init_wire_bw;
power.readOp.leakage += wtemp2->power.readOp.leakage * wire_bw;
power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage * wire_bw;
//cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
if (uca_tree) {
power.readOp.leakage += (wtemp2->power.readOp.leakage * wire_bw);
power.readOp.gate_leakage +=
wtemp2->power.readOp.gate_leakage * wire_bw;
} else {
power.readOp.leakage += (wtemp2->power.readOp.leakage * wire_bw);
power.readOp.gate_leakage +=
wtemp2->power.readOp.gate_leakage * wire_bw;
wire_bw *= 2;
if (ht_temp > wtemp3->repeater_spacing) {
s3 = wtemp3->repeater_size;
l_eff = wtemp3->repeater_spacing;
} else {
s3 = (len_temp / wtemp3->repeater_spacing) *
wtemp3->repeater_size;
l_eff = ht_temp;
}
output_buffer(s2, s3, l_eff);
}
//cout<<"power.readOp.leakage"<<power.readOp.leakage<<endl;
//cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
//cout<<"wtemp2->power.readOp.gate_leakage"<<wtemp2->power.readOp.gate_leakage<<endl;
}
if (wtemp1) delete wtemp1;
if (wtemp2) delete wtemp2;
if (wtemp3) delete wtemp3;
}