/* * Copyright (c) 2009 Princeton University * Copyright (c) 2009 The Regents of the University of California * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Hangsheng Wang (Orion 1.0, Princeton) * Xinping Zhu (Orion 1.0, Princeton) * Xuning Chen (Orion 1.0, Princeton) * Bin Li (Orion 2.0, Princeton) * Kambiz Samadi (Orion 2.0, UC San Diego) */ #include #include #include "mem/ruby/network/orion/Crossbar/MatrixCrossbar.hh" #include "mem/ruby/network/orion/TechParameter.hh" using namespace std; MatrixCrossbar::MatrixCrossbar( const string& conn_type_str_, const string& trans_type_str_, uint32_t num_in_, uint32_t num_out_, uint32_t data_width_, uint32_t num_in_seg_, uint32_t num_out_seg_, double len_in_wire_, double len_out_wire_, const TechParameter* tech_param_ptr_ ) : Crossbar( MATRIX_CROSSBAR, conn_type_str_, trans_type_str_, num_in_, num_out_, data_width_, num_in_seg_, num_out_seg_, 0, tech_param_ptr_) { assert(len_in_wire_ == len_in_wire_); assert(len_out_wire_ == len_out_wire_); m_len_in_wire = len_in_wire_; m_len_out_wire = len_out_wire_; init(); } MatrixCrossbar::~MatrixCrossbar() {} double MatrixCrossbar::get_dynamic_energy(bool is_max_) const { double e_atomic; double e_access = 0; e_atomic = m_e_chg_in*m_data_width*(is_max_? 1:0.5); e_access += e_atomic; e_atomic = m_e_chg_out*m_data_width*(is_max_? 1:0.5); e_access += e_atomic; e_atomic = m_e_chg_ctr; e_access += e_atomic; return e_access; } void MatrixCrossbar::init() { // FIXME: need accurate spacing double CrsbarCellWidth = m_tech_param_ptr->get_CrsbarCellWidth(); double CrsbarCellHeight = m_tech_param_ptr->get_CrsbarCellHeight(); double len_in = m_num_out*m_data_width*CrsbarCellWidth; double len_out = m_num_in*m_data_width*CrsbarCellHeight; if(len_in > m_len_in_wire) m_len_in_wire = len_in; if(len_out > m_len_out_wire) m_len_out_wire = len_out; double CC3metal = m_tech_param_ptr->get_CC3metal(); m_cap_in_wire = CC3metal*m_len_in_wire; m_cap_out_wire = CC3metal*m_len_out_wire; double Cmetal = m_tech_param_ptr->get_Cmetal(); m_cap_ctr_wire = Cmetal*m_len_in_wire/2.0; m_len_req_wire = m_len_in_wire; double e_factor = m_tech_param_ptr->get_EnergyFactor(); m_e_chg_in = calc_in_cap()*e_factor; m_e_chg_out = calc_out_cap(m_num_out)*e_factor; //FIXME: wire length estimation, really reset? //control signal should reset after transmission is done, so no 1/2 m_e_chg_ctr = calc_ctr_cap(m_cap_ctr_wire, 0, 0)*e_factor; m_e_chg_int = 0; m_i_static = calc_i_static(); return; } double MatrixCrossbar::calc_i_static() { double Woutdrvnandn = m_tech_param_ptr->get_Woutdrvnandn(); double Woutdrvnandp = m_tech_param_ptr->get_Woutdrvnandp(); double Woutdrvnorn = m_tech_param_ptr->get_Woutdrvnorn(); double Woutdrvnorp = m_tech_param_ptr->get_Woutdrvnorp(); double Wdecinvn = m_tech_param_ptr->get_Wdecinvn(); double Wdecinvp = m_tech_param_ptr->get_Wdecinvp(); double Woutdrivern = m_tech_param_ptr->get_Woutdrivern(); double Woutdriverp = m_tech_param_ptr->get_Woutdriverp(); double NAND2_TAB_0 = m_tech_param_ptr->get_NAND2_TAB(0); double NAND2_TAB_1 = m_tech_param_ptr->get_NAND2_TAB(1); double NAND2_TAB_2 = m_tech_param_ptr->get_NAND2_TAB(2); double NAND2_TAB_3 = m_tech_param_ptr->get_NAND2_TAB(3); double NOR2_TAB_0 = m_tech_param_ptr->get_NOR2_TAB(0); double NOR2_TAB_1 = m_tech_param_ptr->get_NOR2_TAB(1); double NOR2_TAB_2 = m_tech_param_ptr->get_NOR2_TAB(2); double NOR2_TAB_3 = m_tech_param_ptr->get_NOR2_TAB(3); double NMOS_TAB_0 = m_tech_param_ptr->get_NMOS_TAB(0); double PMOS_TAB_0 = m_tech_param_ptr->get_PMOS_TAB(0); double i_static = 0; // tri-state buffers i_static += ((Woutdrvnandp*(NAND2_TAB_0+NAND2_TAB_1+NAND2_TAB_2)+Woutdrvnandn*NAND2_TAB_3)/4 + (Woutdrvnorp*NOR2_TAB_0+Woutdrvnorn*(NOR2_TAB_1+NOR2_TAB_2+NOR2_TAB_3))/4 + Woutdrivern*NMOS_TAB_0+Woutdriverp*PMOS_TAB_0)*m_num_in*m_num_out*m_data_width; // input driver i_static += (Wdecinvn*NMOS_TAB_0+Wdecinvp*PMOS_TAB_0)*m_num_in*m_data_width; // output driver i_static += (Woutdrivern*NMOS_TAB_0+Woutdriverp*PMOS_TAB_0)*m_num_out*m_data_width; // control siganl inverter i_static += (Wdecinvn*NMOS_TAB_0+Wdecinvp*PMOS_TAB_0)*m_num_in*m_num_out; return i_static; }