// -*- mode:c++ -*- // Copyright (c) 2003-2005 The Regents of The University of Michigan // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. output header {{ #include #include #include #include "config/ss_compatible_fp.hh" #include "cpu/static_inst.hh" #include "mem/mem_req.hh" // some constructors use MemReq flags }}; output decoder {{ #include "base/cprintf.hh" #include "base/fenv.hh" #include "base/loader/symtab.hh" #include "config/ss_compatible_fp.hh" #include "cpu/exec_context.hh" // for Jump::branchTarget() #include }}; output exec {{ #include #if FULL_SYSTEM #include "arch/alpha/pseudo_inst.hh" #endif #include "base/fenv.hh" #include "config/ss_compatible_fp.hh" #include "cpu/base.hh" #include "cpu/exetrace.hh" #include "sim/sim_exit.hh" }}; //////////////////////////////////////////////////////////////////// // // Namespace statement. Everything below this line will be in the // AlphaISAInst namespace. // namespace AlphaISA; //////////////////////////////////////////////////////////////////// // // Bitfield definitions. // // Universal (format-independent) fields def bitfield OPCODE <31:26>; def bitfield RA <25:21>; def bitfield RB <20:16>; // Memory format def signed bitfield MEMDISP <15: 0>; // displacement def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned) // Memory-format jumps def bitfield JMPFUNC <15:14>; // function code (disp<15:14>) def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>) // Branch format def signed bitfield BRDISP <20: 0>; // displacement // Integer operate format(s>; def bitfield INTIMM <20:13>; // integer immediate (literal) def bitfield IMM <12:12>; // immediate flag def bitfield INTFUNC <11: 5>; // function code def bitfield RC < 4: 0>; // dest reg // Floating-point operate format def bitfield FA <25:21>; def bitfield FB <20:16>; def bitfield FP_FULLFUNC <15: 5>; // complete function code def bitfield FP_TRAPMODE <15:13>; // trapping mode def bitfield FP_ROUNDMODE <12:11>; // rounding mode def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding def bitfield FP_SRCTYPE <10: 9>; // source reg type def bitfield FP_SHORTFUNC < 8: 5>; // short function code def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code def bitfield FC < 4: 0>; // dest reg // PALcode format def bitfield PALFUNC <25: 0>; // function code // EV5 PAL instructions: // HW_LD/HW_ST def bitfield HW_LDST_PHYS <15>; // address is physical def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional def signed bitfield HW_LDST_DISP <9:0>; // signed displacement // HW_REI def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk def bitfield HW_REI_MBZ <13: 0>; // must be zero // HW_MTPR/MW_MFPR def bitfield HW_IPR_IDX <15:0>; // IPR index // M5 instructions def bitfield M5FUNC <7:0>; def operand_types {{ 'sb' : ('signed int', 8), 'ub' : ('unsigned int', 8), 'sw' : ('signed int', 16), 'uw' : ('unsigned int', 16), 'sl' : ('signed int', 32), 'ul' : ('unsigned int', 32), 'sq' : ('signed int', 64), 'uq' : ('unsigned int', 64), 'sf' : ('float', 32), 'df' : ('float', 64) }}; def operands {{ # Int regs default to unsigned, but code should not count on this. # For clarity, descriptions that depend on unsigned behavior should # explicitly specify '.uq'. 'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1), 'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2), 'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3), 'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1), 'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2), 'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3), 'Mem': MemOperandTraits('uq', None, ('IsMemRef', 'IsLoad', 'IsStore'), 4), 'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4), 'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1), 'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1), # The next two are hacks for non-full-system call-pal emulation 'R0': IntRegOperandTraits('uq', '0', None, 1), 'R16': IntRegOperandTraits('uq', '16', None, 1) }}; //////////////////////////////////////////////////////////////////// // // Basic instruction classes/templates/formats etc. // output header {{ // uncomment the following to get SimpleScalar-compatible disassembly // (useful for diffing output traces). // #define SS_COMPATIBLE_DISASSEMBLY /** * Base class for all Alpha static instructions. */ class AlphaStaticInst : public StaticInst { protected: /// Make AlphaISA register dependence tags directly visible in /// this class and derived classes. Maybe these should really /// live here and not in the AlphaISA namespace. enum DependenceTags { FP_Base_DepTag = AlphaISA::FP_Base_DepTag, Fpcr_DepTag = AlphaISA::Fpcr_DepTag, Uniq_DepTag = AlphaISA::Uniq_DepTag, IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag }; /// Constructor. AlphaStaticInst(const char *mnem, MachInst _machInst, OpClass __opClass) : StaticInst(mnem, _machInst, __opClass) { } /// Print a register name for disassembly given the unique /// dependence tag number (FP or int). void printReg(std::ostream &os, int reg) const; std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ void AlphaStaticInst::printReg(std::ostream &os, int reg) const { if (reg < FP_Base_DepTag) { ccprintf(os, "r%d", reg); } else { ccprintf(os, "f%d", reg - FP_Base_DepTag); } } std::string AlphaStaticInst::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); // just print the first two source regs... if there's // a third one, it's a read-modify-write dest (Rc), // e.g. for CMOVxx if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); } if (_numSrcRegs > 1) { ss << ","; printReg(ss, _srcRegIdx[1]); } // just print the first dest... if there's a second one, // it's generally implicit if (_numDestRegs > 0) { if (_numSrcRegs > 0) ss << ","; printReg(ss, _destRegIdx[0]); } return ss.str(); } }}; // Declarations for execute() methods. def template BasicExecDeclare {{ Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *) const; }}; // Basic instruction class declaration template. def template BasicDeclare {{ /** * Static instruction class for "%(mnemonic)s". */ class %(class_name)s : public %(base_class)s { public: /// Constructor. %(class_name)s(MachInst machInst); %(BasicExecDeclare)s }; }}; // Basic instruction class constructor template. def template BasicConstructor {{ inline %(class_name)s::%(class_name)s(MachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s) { %(constructor)s; } }}; // Basic instruction class execute method template. def template BasicExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(code)s; if (fault == No_Fault) { %(op_wb)s; } return fault; } }}; // Basic decode template. def template BasicDecode {{ return new %(class_name)s(machInst); }}; // Basic decode template, passing mnemonic in as string arg to constructor. def template BasicDecodeWithMnemonic {{ return new %(class_name)s("%(mnemonic)s", machInst); }}; // The most basic instruction format... used only for a few misc. insts def format BasicOperate(code, *flags) {{ iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // Nop // output header {{ /** * Static instruction class for no-ops. This is a leaf class. */ class Nop : public AlphaStaticInst { /// Disassembly of original instruction. const std::string originalDisassembly; public: /// Constructor Nop(const std::string _originalDisassembly, MachInst _machInst) : AlphaStaticInst("nop", _machInst, No_OpClass), originalDisassembly(_originalDisassembly) { flags[IsNop] = true; } ~Nop() { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; %(BasicExecDeclare)s }; }}; output decoder {{ std::string Nop::generateDisassembly(Addr pc, const SymbolTable *symtab) const { #ifdef SS_COMPATIBLE_DISASSEMBLY return originalDisassembly; #else return csprintf("%-10s (%s)", "nop", originalDisassembly); #endif } /// Helper function for decoding nops. Substitute Nop object /// for original inst passed in as arg (and delete latter). inline AlphaStaticInst * makeNop(AlphaStaticInst *inst) { AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst); delete inst; return nop; } }}; output exec {{ Fault Nop::execute(%(CPU_exec_context)s *, Trace::InstRecord *) const { return No_Fault; } }}; // integer & FP operate instructions use Rc as dest, so check for // Rc == 31 to detect nops def template OperateNopCheckDecode {{ { AlphaStaticInst *i = new %(class_name)s(machInst); if (RC == 31) { i = makeNop(i); } return i; } }}; // Like BasicOperate format, but generates NOP if RC/FC == 31 def format BasicOperateWithNopCheck(code, *opt_args) {{ iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), opt_args) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = OperateNopCheckDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // Integer operate instructions // output header {{ /** * Base class for integer immediate instructions. */ class IntegerImm : public AlphaStaticInst { protected: /// Immediate operand value (unsigned 8-bit int). uint8_t imm; /// Constructor IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); // just print the first source reg... if there's // a second one, it's a read-modify-write dest (Rc), // e.g. for CMOVxx if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); ss << ","; } ss << (int)imm; if (_numDestRegs > 0) { ss << ","; printReg(ss, _destRegIdx[0]); } return ss.str(); } }}; def template RegOrImmDecode {{ { AlphaStaticInst *i = (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst) : (AlphaStaticInst *)new %(class_name)s(machInst); if (RC == 31) { i = makeNop(i); } return i; } }}; // Primary format for integer operate instructions: // - Generates both reg-reg and reg-imm versions if Rb_or_imm is used. // - Generates NOP if RC == 31. def format IntegerOperate(code, *opt_flags) {{ # If the code block contains 'Rb_or_imm', we define two instructions, # one using 'Rb' and one using 'imm', and have the decoder select # the right one. uses_imm = (code.find('Rb_or_imm') != -1) if uses_imm: orig_code = code # base code is reg version: # rewrite by substituting 'Rb' for 'Rb_or_imm' code = re.sub(r'Rb_or_imm', 'Rb', orig_code) # generate immediate version by substituting 'imm' # note that imm takes no extenstion, so we extend # the regexp to replace any extension as well imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code) # generate declaration for register version cblk = CodeBlock(code) iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = BasicExecute.subst(iop) if uses_imm: # append declaration for imm version imm_cblk = CodeBlock(imm_code) imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk, opt_flags) header_output += BasicDeclare.subst(imm_iop) decoder_output += BasicConstructor.subst(imm_iop) exec_output += BasicExecute.subst(imm_iop) # decode checks IMM bit to pick correct version decode_block = RegOrImmDecode.subst(iop) else: # no imm version: just check for nop decode_block = OperateNopCheckDecode.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // Floating-point instructions // // Note that many FP-type instructions which do not support all the // various rounding & trapping modes use the simpler format // BasicOperateWithNopCheck. // output exec {{ /// Check "FP enabled" machine status bit. Called when executing any FP /// instruction in full-system mode. /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault /// if not. Non-full-system mode: always returns No_Fault. #if FULL_SYSTEM inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { Fault fault = No_Fault; // dummy... this ipr access should not fault if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) { fault = Fen_Fault; } return fault; } #else inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { return No_Fault; } #endif }}; output header {{ /** * Base class for general floating-point instructions. Includes * support for various Alpha rounding and trapping modes. Only FP * instructions that require this support are derived from this * class; the rest derive directly from AlphaStaticInst. */ class AlphaFP : public AlphaStaticInst { public: /// Alpha FP rounding modes. enum RoundingMode { Chopped = 0, ///< round toward zero Minus_Infinity = 1, ///< round toward minus infinity Normal = 2, ///< round to nearest (default) Dynamic = 3, ///< use FPCR setting (in instruction) Plus_Infinity = 3 ///< round to plus inifinity (in FPCR) }; /// Alpha FP trapping modes. /// For instructions that produce integer results, the /// "Underflow Enable" modes really mean "Overflow Enable", and /// the assembly modifier is V rather than U. enum TrappingMode { /// default: nothing enabled Imprecise = 0, ///< no modifier /// underflow/overflow traps enabled, inexact disabled Underflow_Imprecise = 1, ///< /U or /V Underflow_Precise = 5, ///< /SU or /SV /// underflow/overflow and inexact traps enabled Underflow_Inexact_Precise = 7 ///< /SUI or /SVI }; protected: /// Map Alpha rounding mode to C99 constants from . static const int alphaToC99RoundingMode[]; /// Map enum RoundingMode values to disassembly suffixes. static const char *roundingModeSuffix[]; /// Map enum TrappingMode values to FP disassembly suffixes. static const char *fpTrappingModeSuffix[]; /// Map enum TrappingMode values to integer disassembly suffixes. static const char *intTrappingModeSuffix[]; /// This instruction's rounding mode. RoundingMode roundingMode; /// This instruction's trapping mode. TrappingMode trappingMode; /// Have we warned about this instruction's unsupported /// rounding mode (if applicable)? mutable bool warnedOnRounding; /// Have we warned about this instruction's unsupported /// trapping mode (if applicable)? mutable bool warnedOnTrapping; /// Constructor AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), roundingMode((enum RoundingMode)FP_ROUNDMODE), trappingMode((enum TrappingMode)FP_TRAPMODE), warnedOnRounding(false), warnedOnTrapping(false) { } int getC99RoundingMode(uint64_t fpcr_val) const; // This differs from the AlphaStaticInst version only in // printing suffixes for non-default rounding & trapping modes. std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ int AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const { if (roundingMode == Dynamic) { return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)]; } else { return alphaToC99RoundingMode[roundingMode]; } } std::string AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::string mnem_str(mnemonic); #ifndef SS_COMPATIBLE_DISASSEMBLY std::string suffix(""); suffix += ((_destRegIdx[0] >= FP_Base_DepTag) ? fpTrappingModeSuffix[trappingMode] : intTrappingModeSuffix[trappingMode]); suffix += roundingModeSuffix[roundingMode]; if (suffix != "") { mnem_str = csprintf("%s/%s", mnemonic, suffix); } #endif std::stringstream ss; ccprintf(ss, "%-10s ", mnem_str.c_str()); // just print the first two source regs... if there's // a third one, it's a read-modify-write dest (Rc), // e.g. for CMOVxx if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); } if (_numSrcRegs > 1) { ss << ","; printReg(ss, _srcRegIdx[1]); } // just print the first dest... if there's a second one, // it's generally implicit if (_numDestRegs > 0) { if (_numSrcRegs > 0) ss << ","; printReg(ss, _destRegIdx[0]); } return ss.str(); } const int AlphaFP::alphaToC99RoundingMode[] = { FE_TOWARDZERO, // Chopped FE_DOWNWARD, // Minus_Infinity FE_TONEAREST, // Normal FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR }; const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" }; // mark invalid trapping modes, but don't fail on them, because // you could decode anything on a misspeculated path const char *AlphaFP::fpTrappingModeSuffix[] = { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" }; const char *AlphaFP::intTrappingModeSuffix[] = { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" }; }}; // FP instruction class execute method template. Handles non-standard // rounding modes. def template FloatingPointExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { if (trappingMode != Imprecise && !warnedOnTrapping) { warn("%s: non-standard trapping mode not supported", generateDisassembly(0, NULL)); warnedOnTrapping = true; } Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; #if USE_FENV if (roundingMode == Normal) { %(code)s; } else { fesetround(getC99RoundingMode(xc->readFpcr())); %(code)s; fesetround(FE_TONEAREST); } #else if (roundingMode != Normal && !warnedOnRounding) { warn("%s: non-standard rounding mode not supported", generateDisassembly(0, NULL)); warnedOnRounding = true; } %(code)s; #endif if (fault == No_Fault) { %(op_wb)s; } return fault; } }}; // FP instruction class execute method template where no dynamic // rounding mode control is needed. Like BasicExecute, but includes // check & warning for non-standard trapping mode. def template FPFixedRoundingExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { if (trappingMode != Imprecise && !warnedOnTrapping) { warn("%s: non-standard trapping mode not supported", generateDisassembly(0, NULL)); warnedOnTrapping = true; } Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(code)s; if (fault == No_Fault) { %(op_wb)s; } return fault; } }}; def template FloatingPointDecode {{ { AlphaStaticInst *i = new %(class_name)s(machInst); if (FC == 31) { i = makeNop(i); } return i; } }}; // General format for floating-point operate instructions: // - Checks trapping and rounding mode flags. Trapping modes // currently unimplemented (will fail). // - Generates NOP if FC == 31. def format FloatingPointOperate(code, *opt_args) {{ iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) decode_block = FloatingPointDecode.subst(iop) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = FloatingPointExecute.subst(iop) }}; // Special format for cvttq where rounding mode is pre-decoded def format FPFixedRounding(code, class_suffix, *opt_args) {{ Name += class_suffix iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) decode_block = FloatingPointDecode.subst(iop) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = FPFixedRoundingExecute.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // Memory-format instructions: LoadAddress, Load, Store // output header {{ /** * Base class for general Alpha memory-format instructions. */ class Memory : public AlphaStaticInst { protected: /// Memory request flags. See mem_req_base.hh. unsigned memAccessFlags; /// Pointer to EAComp object. const StaticInstPtr eaCompPtr; /// Pointer to MemAcc object. const StaticInstPtr memAccPtr; /// Constructor Memory(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr _eaCompPtr = nullStaticInstPtr, StaticInstPtr _memAccPtr = nullStaticInstPtr) : AlphaStaticInst(mnem, _machInst, __opClass), memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; public: const StaticInstPtr &eaCompInst() const { return eaCompPtr; } const StaticInstPtr &memAccInst() const { return memAccPtr; } }; /** * Base class for memory-format instructions using a 32-bit * displacement (i.e. most of them). */ class MemoryDisp32 : public Memory { protected: /// Displacement for EA calculation (signed). int32_t disp; /// Constructor. MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr _eaCompPtr = nullStaticInstPtr, StaticInstPtr _memAccPtr = nullStaticInstPtr) : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), disp(MEMDISP) { } }; /** * Base class for a few miscellaneous memory-format insts * that don't interpret the disp field: wh64, fetch, fetch_m, ecb. * None of these instructions has a destination register either. */ class MemoryNoDisp : public Memory { protected: /// Constructor MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr _eaCompPtr = nullStaticInstPtr, StaticInstPtr _memAccPtr = nullStaticInstPtr) : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s %c%d,%d(r%d)", mnemonic, flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB); } std::string MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s (r%d)", mnemonic, RB); } }}; def format LoadAddress(code) {{ iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code)) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; def template LoadStoreDeclare {{ /** * Static instruction class for "%(mnemonic)s". */ class %(class_name)s : public %(base_class)s { protected: /** * "Fake" effective address computation class for "%(mnemonic)s". */ class EAComp : public %(base_class)s { public: /// Constructor EAComp(MachInst machInst); %(BasicExecDeclare)s }; /** * "Fake" memory access instruction class for "%(mnemonic)s". */ class MemAcc : public %(base_class)s { public: /// Constructor MemAcc(MachInst machInst); %(BasicExecDeclare)s }; public: /// Constructor. %(class_name)s(MachInst machInst); %(BasicExecDeclare)s }; }}; def template LoadStoreConstructor {{ /** TODO: change op_class to AddrGenOp or something (requires * creating new member of OpClass enum in op_class.hh, updating * config files, etc.). */ inline %(class_name)s::EAComp::EAComp(MachInst machInst) : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp) { %(ea_constructor)s; } inline %(class_name)s::MemAcc::MemAcc(MachInst machInst) : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s) { %(memacc_constructor)s; } inline %(class_name)s::%(class_name)s(MachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s, new EAComp(machInst), new MemAcc(machInst)) { %(constructor)s; } }}; def template EACompExecute {{ Fault %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Addr EA; Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(code)s; if (fault == No_Fault) { %(op_wb)s; xc->setEA(EA); } return fault; } }}; def template MemAccExecute {{ Fault %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Addr EA; Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_nonmem_rd)s; EA = xc->getEA(); if (fault == No_Fault) { %(op_mem_rd)s; %(code)s; } if (fault == No_Fault) { %(op_mem_wb)s; } if (fault == No_Fault) { %(postacc_code)s; } if (fault == No_Fault) { %(op_nonmem_wb)s; } return fault; } }}; def template LoadStoreExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Addr EA; Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_nonmem_rd)s; %(ea_code)s; if (fault == No_Fault) { %(op_mem_rd)s; %(memacc_code)s; } if (fault == No_Fault) { %(op_mem_wb)s; } if (fault == No_Fault) { %(postacc_code)s; } if (fault == No_Fault) { %(op_nonmem_wb)s; } return fault; } }}; def template PrefetchExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Addr EA; Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_nonmem_rd)s; %(ea_code)s; if (fault == No_Fault) { xc->prefetch(EA, memAccessFlags); } return No_Fault; } }}; // load instructions use Ra as dest, so check for // Ra == 31 to detect nops def template LoadNopCheckDecode {{ { AlphaStaticInst *i = new %(class_name)s(machInst); if (RA == 31) { i = makeNop(i); } return i; } }}; // for some load instructions, Ra == 31 indicates a prefetch (not a nop) def template LoadPrefetchCheckDecode {{ { if (RA != 31) { return new %(class_name)s(machInst); } else { return new %(class_name)sPrefetch(machInst); } } }}; let {{ def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '', base_class = 'MemoryDisp32', flags = [], decode_template = BasicDecode, exec_template = LoadStoreExecute): # Segregate flags into instruction flags (handled by InstObjParams) # and memory access flags (handled here). # Would be nice to autogenerate this list, but oh well. valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE'] mem_flags = [f for f in flags if f in valid_mem_flags] inst_flags = [f for f in flags if f not in valid_mem_flags] # add hook to get effective addresses into execution trace output. ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n' # generate code block objects ea_cblk = CodeBlock(ea_code) memacc_cblk = CodeBlock(memacc_code) postacc_cblk = CodeBlock(postacc_code) # Some CPU models execute the memory operation as an atomic unit, # while others want to separate them into an effective address # computation and a memory access operation. As a result, we need # to generate three StaticInst objects. Note that the latter two # are nested inside the larger "atomic" one. # generate InstObjParams for EAComp object ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags) # generate InstObjParams for MemAcc object memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags) # in the split execution model, the MemAcc portion is responsible # for the post-access code. memacc_iop.postacc_code = postacc_cblk.code # generate InstObjParams for unified execution cblk = CodeBlock(ea_code + memacc_code + postacc_code) iop = InstObjParams(name, Name, base_class, cblk, inst_flags) iop.ea_constructor = ea_cblk.constructor iop.ea_code = ea_cblk.code iop.memacc_constructor = memacc_cblk.constructor iop.memacc_code = memacc_cblk.code iop.postacc_code = postacc_cblk.code if mem_flags: s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';' iop.constructor += s memacc_iop.constructor += s # (header_output, decoder_output, decode_block, exec_output) return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop), decode_template.subst(iop), EACompExecute.subst(ea_iop) + MemAccExecute.subst(memacc_iop) + exec_template.subst(iop)) }}; def format LoadOrNop(ea_code, memacc_code, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, decode_template = LoadNopCheckDecode) }}; // Note that the flags passed in apply only to the prefetch version def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{ # declare the load instruction object and generate the decode block (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name, ea_code, memacc_code, decode_template = LoadPrefetchCheckDecode) # Declare the prefetch instruction object. # convert flags from tuple to list to make them mutable pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT'] (pf_header_output, pf_decoder_output, _, pf_exec_output) = \ LoadStoreBase(name, Name + 'Prefetch', ea_code, '', flags = pf_flags, exec_template = PrefetchExecute) header_output += pf_header_output decoder_output += pf_decoder_output exec_output += pf_exec_output }}; def format Store(ea_code, memacc_code, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags) }}; def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code, flags = flags) }}; // Use 'MemoryNoDisp' as base: for wh64, fetch, ecb def format MiscPrefetch(ea_code, memacc_code, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, base_class = 'MemoryNoDisp') }}; //////////////////////////////////////////////////////////////////// // // Control transfer instructions // output header {{ /** * Base class for instructions whose disassembly is not purely a * function of the machine instruction (i.e., it depends on the * PC). This class overrides the disassemble() method to check * the PC and symbol table values before re-using a cached * disassembly string. This is necessary for branches and jumps, * where the disassembly string includes the target address (which * may depend on the PC and/or symbol table). */ class PCDependentDisassembly : public AlphaStaticInst { protected: /// Cached program counter from last disassembly mutable Addr cachedPC; /// Cached symbol table pointer from last disassembly mutable const SymbolTable *cachedSymtab; /// Constructor PCDependentDisassembly(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), cachedPC(0), cachedSymtab(0) { } const std::string & disassemble(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for branches (PC-relative control transfers), * conditional or unconditional. */ class Branch : public PCDependentDisassembly { protected: /// Displacement to target address (signed). int32_t disp; /// Constructor. Branch(const char *mnem, MachInst _machInst, OpClass __opClass) : PCDependentDisassembly(mnem, _machInst, __opClass), disp(BRDISP << 2) { } Addr branchTarget(Addr branchPC) const; std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for jumps (register-indirect control transfers). In * the Alpha ISA, these are always unconditional. */ class Jump : public PCDependentDisassembly { protected: /// Displacement to target address (signed). int32_t disp; public: /// Constructor Jump(const char *mnem, MachInst _machInst, OpClass __opClass) : PCDependentDisassembly(mnem, _machInst, __opClass), disp(BRDISP) { } Addr branchTarget(ExecContext *xc) const; std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ Addr Branch::branchTarget(Addr branchPC) const { return branchPC + 4 + disp; } Addr Jump::branchTarget(ExecContext *xc) const { Addr NPC = xc->readPC() + 4; uint64_t Rb = xc->readIntReg(_srcRegIdx[0]); return (Rb & ~3) | (NPC & 1); } const std::string & PCDependentDisassembly::disassemble(Addr pc, const SymbolTable *symtab) const { if (!cachedDisassembly || pc != cachedPC || symtab != cachedSymtab) { if (cachedDisassembly) delete cachedDisassembly; cachedDisassembly = new std::string(generateDisassembly(pc, symtab)); cachedPC = pc; cachedSymtab = symtab; } return *cachedDisassembly; } std::string Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); // There's only one register arg (RA), but it could be // either a source (the condition for conditional // branches) or a destination (the link reg for // unconditional branches) if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); ss << ","; } else if (_numDestRegs > 0) { printReg(ss, _destRegIdx[0]); ss << ","; } #ifdef SS_COMPATIBLE_DISASSEMBLY if (_numSrcRegs == 0 && _numDestRegs == 0) { printReg(ss, 31); ss << ","; } #endif Addr target = pc + 4 + disp; std::string str; if (symtab && symtab->findSymbol(target, str)) ss << str; else ccprintf(ss, "0x%x", target); return ss.str(); } std::string Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); #ifdef SS_COMPATIBLE_DISASSEMBLY if (_numDestRegs == 0) { printReg(ss, 31); ss << ","; } #endif if (_numDestRegs > 0) { printReg(ss, _destRegIdx[0]); ss << ","; } ccprintf(ss, "(r%d)", RB); return ss.str(); } }}; def template JumpOrBranchDecode {{ return (RA == 31) ? (StaticInst *)new %(class_name)s(machInst) : (StaticInst *)new %(class_name)sAndLink(machInst); }}; def format CondBranch(code) {{ code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n'; iop = InstObjParams(name, Name, 'Branch', CodeBlock(code), ('IsDirectControl', 'IsCondControl')) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; let {{ def UncondCtrlBase(name, Name, base_class, npc_expr, flags): # Declare basic control transfer w/o link (i.e. link reg is R31) nolink_code = 'NPC = %s;\n' % npc_expr nolink_iop = InstObjParams(name, Name, base_class, CodeBlock(nolink_code), flags) header_output = BasicDeclare.subst(nolink_iop) decoder_output = BasicConstructor.subst(nolink_iop) exec_output = BasicExecute.subst(nolink_iop) # Generate declaration of '*AndLink' version, append to decls link_code = 'Ra = NPC & ~3;\n' + nolink_code link_iop = InstObjParams(name, Name + 'AndLink', base_class, CodeBlock(link_code), flags) header_output += BasicDeclare.subst(link_iop) decoder_output += BasicConstructor.subst(link_iop) exec_output += BasicExecute.subst(link_iop) # need to use link_iop for the decode template since it is expecting # the shorter version of class_name (w/o "AndLink") return (header_output, decoder_output, JumpOrBranchDecode.subst(nolink_iop), exec_output) }}; def format UncondBranch(*flags) {{ flags += ('IsUncondControl', 'IsDirectControl') (header_output, decoder_output, decode_block, exec_output) = \ UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags) }}; def format Jump(*flags) {{ flags += ('IsUncondControl', 'IsIndirectControl') (header_output, decoder_output, decode_block, exec_output) = \ UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags) }}; //////////////////////////////////////////////////////////////////// // // PAL calls // output header {{ /** * Base class for emulated call_pal calls (used only in * non-full-system mode). */ class EmulatedCallPal : public AlphaStaticInst { protected: /// Constructor. EmulatedCallPal(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string EmulatedCallPal::generateDisassembly(Addr pc, const SymbolTable *symtab) const { #ifdef SS_COMPATIBLE_DISASSEMBLY return csprintf("%s %s", "call_pal", mnemonic); #else return csprintf("%-10s %s", "call_pal", mnemonic); #endif } }}; def format EmulatedCallPal(code, *flags) {{ iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; output header {{ /** * Base class for full-system-mode call_pal instructions. * Probably could turn this into a leaf class and get rid of the * parser template. */ class CallPalBase : public AlphaStaticInst { protected: int palFunc; ///< Function code part of instruction int palOffset; ///< Target PC, offset from IPR_PAL_BASE bool palValid; ///< is the function code valid? bool palPriv; ///< is this call privileged? /// Constructor. CallPalBase(const char *mnem, MachInst _machInst, OpClass __opClass); std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ inline CallPalBase::CallPalBase(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), palFunc(PALFUNC) { // From the 21164 HRM (paraphrased): // Bit 7 of the function code (mask 0x80) indicates // whether the call is privileged (bit 7 == 0) or // unprivileged (bit 7 == 1). The privileged call table // starts at 0x2000, the unprivielged call table starts at // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the // offset. const int palPrivMask = 0x80; const int palOffsetMask = 0x3f; // Pal call is invalid unless all other bits are 0 palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0); palPriv = ((machInst & palPrivMask) == 0); int shortPalFunc = (machInst & palOffsetMask); // Add 1 to base to set pal-mode bit palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6); } std::string CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s %#x", "call_pal", palFunc); } }}; def format CallPal(code, *flags) {{ iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // hw_ld, hw_st // output header {{ /** * Base class for hw_ld and hw_st. */ class HwLoadStore : public Memory { protected: /// Displacement for EA calculation (signed). int16_t disp; /// Constructor HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr _eaCompPtr = nullStaticInstPtr, StaticInstPtr _memAccPtr = nullStaticInstPtr); std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ inline HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr _eaCompPtr, StaticInstPtr _memAccPtr) : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), disp(HW_LDST_DISP) { memAccessFlags = 0; if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL; if (HW_LDST_ALT) memAccessFlags |= ALTMODE; if (HW_LDST_VPTE) memAccessFlags |= VPTE; if (HW_LDST_LOCK) memAccessFlags |= LOCKED; } std::string HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const { #ifdef SS_COMPATIBLE_DISASSEMBLY return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB); #else // HW_LDST_LOCK and HW_LDST_COND are the same bit. const char *lock_str = (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : ""; return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s", mnemonic, RA, disp, RB, HW_LDST_PHYS ? ",PHYS" : "", HW_LDST_ALT ? ",ALT" : "", HW_LDST_QUAD ? ",QUAD" : "", HW_LDST_VPTE ? ",VPTE" : "", lock_str); #endif } }}; def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, flags = flags, base_class = 'HwLoadStore') }}; def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{ (header_output, decoder_output, decode_block, exec_output) = \ LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, postacc_code, flags = flags, base_class = 'HwLoadStore') }}; output header {{ /** * Base class for hw_mfpr and hw_mtpr. */ class HwMoveIPR : public AlphaStaticInst { protected: /// Index of internal processor register. int ipr_index; /// Constructor HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), ipr_index(HW_IPR_IDX) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const { if (_numSrcRegs > 0) { // must be mtpr return csprintf("%-10s r%d,IPR(%#x)", mnemonic, RA, ipr_index); } else { // must be mfpr return csprintf("%-10s IPR(%#x),r%d", mnemonic, ipr_index, RA); } } }}; def format HwMoveIPR(code) {{ iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code), ['IprAccessOp']) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop) }}; //////////////////////////////////////////////////////////////////// // // Unimplemented instructions // output header {{ /** * Static instruction class for unimplemented instructions that * cause simulator termination. Note that these are recognized * (legal) instructions that the simulator does not support; the * 'Unknown' class is used for unrecognized/illegal instructions. * This is a leaf class. */ class FailUnimplemented : public AlphaStaticInst { public: /// Constructor FailUnimplemented(const char *_mnemonic, MachInst _machInst) : AlphaStaticInst(_mnemonic, _machInst, No_OpClass) { // don't call execute() (which panics) if we're on a // speculative path flags[IsNonSpeculative] = true; } %(BasicExecDeclare)s std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for unimplemented instructions that cause a warning * to be printed (but do not terminate simulation). This * implementation is a little screwy in that it will print a * warning for each instance of a particular unimplemented machine * instruction, not just for each unimplemented opcode. Should * probably make the 'warned' flag a static member of the derived * class. */ class WarnUnimplemented : public AlphaStaticInst { private: /// Have we warned on this instruction yet? mutable bool warned; public: /// Constructor WarnUnimplemented(const char *_mnemonic, MachInst _machInst) : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false) { // don't call execute() (which panics) if we're on a // speculative path flags[IsNonSpeculative] = true; } %(BasicExecDeclare)s std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; output decoder {{ std::string FailUnimplemented::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s (unimplemented)", mnemonic); } std::string WarnUnimplemented::generateDisassembly(Addr pc, const SymbolTable *symtab) const { #ifdef SS_COMPATIBLE_DISASSEMBLY return csprintf("%-10s", mnemonic); #else return csprintf("%-10s (unimplemented)", mnemonic); #endif } }}; output exec {{ Fault FailUnimplemented::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { panic("attempt to execute unimplemented instruction '%s' " "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE); return Unimplemented_Opcode_Fault; } Fault WarnUnimplemented::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { if (!warned) { warn("instruction '%s' unimplemented\n", mnemonic); warned = true; } return No_Fault; } }}; def format FailUnimpl() {{ iop = InstObjParams(name, 'FailUnimplemented') decode_block = BasicDecodeWithMnemonic.subst(iop) }}; def format WarnUnimpl() {{ iop = InstObjParams(name, 'WarnUnimplemented') decode_block = BasicDecodeWithMnemonic.subst(iop) }}; output header {{ /** * Static instruction class for unknown (illegal) instructions. * These cause simulator termination if they are executed in a * non-speculative mode. This is a leaf class. */ class Unknown : public AlphaStaticInst { public: /// Constructor Unknown(MachInst _machInst) : AlphaStaticInst("unknown", _machInst, No_OpClass) { // don't call execute() (which panics) if we're on a // speculative path flags[IsNonSpeculative] = true; } %(BasicExecDeclare)s std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; }}; //////////////////////////////////////////////////////////////////// // // Unknown instructions // output decoder {{ std::string Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s (inst 0x%x, opcode 0x%x)", "unknown", machInst, OPCODE); } }}; output exec {{ Fault Unknown::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { panic("attempt to execute unknown instruction " "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE); return Unimplemented_Opcode_Fault; } }}; def format Unknown() {{ decode_block = 'return new Unknown(machInst);\n' }}; //////////////////////////////////////////////////////////////////// // // Utility functions for execute methods // output exec {{ /// Return opa + opb, summing carry into third arg. inline uint64_t addc(uint64_t opa, uint64_t opb, int &carry) { uint64_t res = opa + opb; if (res < opa || res < opb) ++carry; return res; } /// Multiply two 64-bit values (opa * opb), returning the 128-bit /// product in res_hi and res_lo. inline void mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo) { // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies uint64_t opa_hi = opa<63:32>; uint64_t opa_lo = opa<31:0>; uint64_t opb_hi = opb<63:32>; uint64_t opb_lo = opb<31:0>; res_lo = opa_lo * opb_lo; // The middle partial products logically belong in bit // positions 95 to 32. Thus the lower 32 bits of each product // sum into the upper 32 bits of the low result, while the // upper 32 sum into the low 32 bits of the upper result. uint64_t partial1 = opa_hi * opb_lo; uint64_t partial2 = opa_lo * opb_hi; uint64_t partial1_lo = partial1<31:0> << 32; uint64_t partial1_hi = partial1<63:32>; uint64_t partial2_lo = partial2<31:0> << 32; uint64_t partial2_hi = partial2<63:32>; // Add partial1_lo and partial2_lo to res_lo, keeping track // of any carries out int carry_out = 0; res_lo = addc(partial1_lo, res_lo, carry_out); res_lo = addc(partial2_lo, res_lo, carry_out); // Now calculate the high 64 bits... res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out; } /// Map 8-bit S-floating exponent to 11-bit T-floating exponent. /// See Table 2-2 of Alpha AHB. inline int map_s(int old_exp) { int hibit = old_exp<7:>; int lobits = old_exp<6:0>; if (hibit == 1) { return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits); } else { return (lobits == 0) ? 0 : (0x380 | lobits); } } /// Convert a 32-bit S-floating value to the equivalent 64-bit /// representation to be stored in an FP reg. inline uint64_t s_to_t(uint32_t s_val) { uint64_t tmp = s_val; return (tmp<31:> << 63 // sign bit | (uint64_t)map_s(tmp<30:23>) << 52 // exponent | tmp<22:0> << 29); // fraction } /// Convert a 64-bit T-floating value to the equivalent 32-bit /// S-floating representation to be stored in memory. inline int32_t t_to_s(uint64_t t_val) { return (t_val<63:62> << 30 // sign bit & hi exp bit | t_val<58:29>); // rest of exp & fraction } }}; //////////////////////////////////////////////////////////////////// // // The actual decoder specification // decode OPCODE default Unknown::unknown() { format LoadAddress { 0x08: lda({{ Ra = Rb + disp; }}); 0x09: ldah({{ Ra = Rb + (disp << 16); }}); } format LoadOrNop { 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); 0x20: copy_load({{EA = Ra;}}, {{fault = xc->copySrcTranslate(EA);}}, IsMemRef, IsLoad, IsCopy); } format LoadOrPrefetch { 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); // IsFloating flag on lds gets the prefetch to disassemble // using f31 instead of r31... funcitonally it's unnecessary 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, PF_EXCLUSIVE, IsFloating); } format Store { 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); 0x24: copy_store({{EA = Rb;}}, {{fault = xc->copy(EA);}}, IsMemRef, IsStore, IsCopy); } format StoreCond { 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, {{ uint64_t tmp = Mem_write_result; // see stq_c Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; }}, LOCKED); 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, {{ uint64_t tmp = Mem_write_result; // If the write operation returns 0 or 1, then // this was a conventional store conditional, // and the value indicates the success/failure // of the operation. If another value is // returned, then this was a Turbolaser // mailbox access, and we don't update the // result register at all. Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; }}, LOCKED); } format IntegerOperate { 0x10: decode INTFUNC { // integer arithmetic operations 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 0x40: addlv({{ uint32_t tmp = Ra.sl + Rb_or_imm.sl; // signed overflow occurs when operands have same sign // and sign of result does not match. if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) fault = Integer_Overflow_Fault; Rc.sl = tmp; }}); 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 0x60: addqv({{ uint64_t tmp = Ra + Rb_or_imm; // signed overflow occurs when operands have same sign // and sign of result does not match. if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) fault = Integer_Overflow_Fault; Rc = tmp; }}); 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 0x49: sublv({{ uint32_t tmp = Ra.sl - Rb_or_imm.sl; // signed overflow detection is same as for add, // except we need to look at the *complemented* // sign bit of the subtrahend (Rb), i.e., if the initial // signs are the *same* then no overflow can occur if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) fault = Integer_Overflow_Fault; Rc.sl = tmp; }}); 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 0x69: subqv({{ uint64_t tmp = Ra - Rb_or_imm; // signed overflow detection is same as for add, // except we need to look at the *complemented* // sign bit of the subtrahend (Rb), i.e., if the initial // signs are the *same* then no overflow can occur if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) fault = Integer_Overflow_Fault; Rc = tmp; }}); 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 0x0f: cmpbge({{ int hi = 7; int lo = 0; uint64_t tmp = 0; for (int i = 0; i < 8; ++i) { tmp |= (Ra.uq >= Rb_or_imm.uq) << i; hi += 8; lo += 8; } Rc = tmp; }}); } 0x11: decode INTFUNC { // integer logical operations 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); // conditional moves 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); // For AMASK, RA must be R31. 0x61: decode RA { 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); } // For IMPLVER, RA must be R31 and the B operand // must be the immediate value 1. 0x6c: decode RA { 31: decode IMM { 1: decode INTIMM { // return EV5 for FULL_SYSTEM and EV6 otherwise 1: implver({{ #if FULL_SYSTEM Rc = 1; #else Rc = 2; #endif }}); } } } #if FULL_SYSTEM // The mysterious 11.25... 0x25: WarnUnimpl::eleven25(); #endif } 0x12: decode INTFUNC { 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 0x52: mskwh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; }}); 0x62: msklh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; }}); 0x72: mskqh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; }}); 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 0x5a: extwh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 0x6a: extlh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 0x7a: extqh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 0x57: inswh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; }}); 0x67: inslh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; }}); 0x77: insqh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; }}); 0x30: zap({{ uint64_t zapmask = 0; for (int i = 0; i < 8; ++i) { if (Rb_or_imm) zapmask |= (mask(8) << (i * 8)); } Rc = Ra & ~zapmask; }}); 0x31: zapnot({{ uint64_t zapmask = 0; for (int i = 0; i < 8; ++i) { if (!Rb_or_imm) zapmask |= (mask(8) << (i * 8)); } Rc = Ra & ~zapmask; }}); } 0x13: decode INTFUNC { // integer multiplies 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 0x30: umulh({{ uint64_t hi, lo; mul128(Ra, Rb_or_imm, hi, lo); Rc = hi; }}, IntMultOp); 0x40: mullv({{ // 32-bit multiply with trap on overflow int64_t Rax = Ra.sl; // sign extended version of Ra.sl int64_t Rbx = Rb_or_imm.sl; int64_t tmp = Rax * Rbx; // To avoid overflow, all the upper 32 bits must match // the sign bit of the lower 32. We code this as // checking the upper 33 bits for all 0s or all 1s. uint64_t sign_bits = tmp<63:31>; if (sign_bits != 0 && sign_bits != mask(33)) fault = Integer_Overflow_Fault; Rc.sl = tmp<31:0>; }}, IntMultOp); 0x60: mulqv({{ // 64-bit multiply with trap on overflow uint64_t hi, lo; mul128(Ra, Rb_or_imm, hi, lo); // all the upper 64 bits must match the sign bit of // the lower 64 if (!((hi == 0 && lo<63:> == 0) || (hi == mask(64) && lo<63:> == 1))) fault = Integer_Overflow_Fault; Rc = lo; }}, IntMultOp); } 0x1c: decode INTFUNC { 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 0x32: ctlz({{ uint64_t count = 0; uint64_t temp = Rb; if (temp<63:32>) temp >>= 32; else count += 32; if (temp<31:16>) temp >>= 16; else count += 16; if (temp<15:8>) temp >>= 8; else count += 8; if (temp<7:4>) temp >>= 4; else count += 4; if (temp<3:2>) temp >>= 2; else count += 2; if (temp<1:1>) temp >>= 1; else count += 1; if ((temp<0:0>) != 0x1) count += 1; Rc = count; }}, IntAluOp); 0x33: cttz({{ uint64_t count = 0; uint64_t temp = Rb; if (!(temp<31:0>)) { temp >>= 32; count += 32; } if (!(temp<15:0>)) { temp >>= 16; count += 16; } if (!(temp<7:0>)) { temp >>= 8; count += 8; } if (!(temp<3:0>)) { temp >>= 4; count += 4; } if (!(temp<1:0>)) { temp >>= 2; count += 2; } if (!(temp<0:0> & ULL(0x1))) count += 1; Rc = count; }}, IntAluOp); format FailUnimpl { 0x30: ctpop(); 0x31: perr(); 0x34: unpkbw(); 0x35: unpkbl(); 0x36: pkwb(); 0x37: pklb(); 0x38: minsb8(); 0x39: minsw4(); 0x3a: minub8(); 0x3b: minuw4(); 0x3c: maxub8(); 0x3d: maxuw4(); 0x3e: maxsb8(); 0x3f: maxsw4(); } format BasicOperateWithNopCheck { 0x70: decode RB { 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); } 0x78: decode RB { 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, FloatCvtOp); } } } } // Conditional branches. format CondBranch { 0x39: beq({{ cond = (Ra == 0); }}); 0x3d: bne({{ cond = (Ra != 0); }}); 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 0x3a: blt({{ cond = (Ra.sq < 0); }}); 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 0x31: fbeq({{ cond = (Fa == 0); }}); 0x35: fbne({{ cond = (Fa != 0); }}); 0x36: fbge({{ cond = (Fa >= 0); }}); 0x37: fbgt({{ cond = (Fa > 0); }}); 0x33: fble({{ cond = (Fa <= 0); }}); 0x32: fblt({{ cond = (Fa < 0); }}); } // unconditional branches format UncondBranch { 0x30: br(); 0x34: bsr(IsCall); } // indirect branches 0x1a: decode JMPFUNC { format Jump { 0: jmp(); 1: jsr(IsCall); 2: ret(IsReturn); 3: jsr_coroutine(IsCall, IsReturn); } } // Square root and integer-to-FP moves 0x14: decode FP_SHORTFUNC { // Integer to FP register moves must have RB == 31 0x4: decode RB { 31: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 0x014: FailUnimpl::itoff(); // VAX-format conversion } } } // Square root instructions must have FA == 31 0xb: decode FA { 31: decode FP_TYPEFUNC { format FloatingPointOperate { #if SS_COMPATIBLE_FP 0x0b: sqrts({{ if (Fb < 0.0) fault = Arithmetic_Fault; Fc = sqrt(Fb); }}, FloatSqrtOp); #else 0x0b: sqrts({{ if (Fb.sf < 0.0) fault = Arithmetic_Fault; Fc.sf = sqrt(Fb.sf); }}, FloatSqrtOp); #endif 0x2b: sqrtt({{ if (Fb < 0.0) fault = Arithmetic_Fault; Fc = sqrt(Fb); }}, FloatSqrtOp); } } } // VAX-format sqrtf and sqrtg are not implemented 0xa: FailUnimpl::sqrtfg(); } // IEEE floating point 0x16: decode FP_SHORTFUNC_TOP2 { // The top two bits of the short function code break this // space into four groups: binary ops, compares, reserved, and // conversions. See Table 4-12 of AHB. There are different // special cases in these different groups, so we decode on // these top two bits first just to select a decode strategy. // Most of these instructions may have various trapping and // rounding mode flags set; these are decoded in the // FloatingPointDecode template used by the // FloatingPointOperate format. // add/sub/mul/div: just decode on the short function code // and source type. All valid trapping and rounding modes apply. 0: decode FP_TRAPMODE { // check for valid trapping modes here 0,1,5,7: decode FP_TYPEFUNC { format FloatingPointOperate { #if SS_COMPATIBLE_FP 0x00: adds({{ Fc = Fa + Fb; }}); 0x01: subs({{ Fc = Fa - Fb; }}); 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); #else 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); #endif 0x20: addt({{ Fc = Fa + Fb; }}); 0x21: subt({{ Fc = Fa - Fb; }}); 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); } } } // Floating-point compare instructions must have the default // rounding mode, and may use the default trapping mode or // /SU. Both trapping modes are treated the same by M5; the // only difference on the real hardware (as far a I can tell) // is that without /SU you'd get an imprecise trap if you // tried to compare a NaN with something else (instead of an // "unordered" result). 1: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a4, 0x5a4: cmptun({{ // unordered Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; }}, FloatCmpOp); } } // The FP-to-integer and integer-to-FP conversion insts // require that FA be 31. 3: decode FA { 31: decode FP_TYPEFUNC { format FloatingPointOperate { 0x2f: decode FP_ROUNDMODE { format FPFixedRounding { // "chopped" i.e. round toward zero 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, Chopped); // round to minus infinity 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, MinusInfinity); } default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); } // The cvtts opcode is overloaded to be cvtst if the trap // mode is 2 or 6 (which are not valid otherwise) 0x2c: decode FP_FULLFUNC { format BasicOperateWithNopCheck { // trap on denorm version "cvtst/s" is // simulated same as cvtst 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); } default: cvtts({{ Fc.sf = Fb; }}); } // The trapping mode for integer-to-FP conversions // must be /SUI or nothing; /U and /SU are not // allowed. The full set of rounding modes are // supported though. 0x3c: decode FP_TRAPMODE { 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); } 0x3e: decode FP_TRAPMODE { 0,7: cvtqt({{ Fc = Fb.sq; }}); } } } } } // misc FP operate 0x17: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x010: cvtlq({{ Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; }}); 0x030: cvtql({{ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); }}); // We treat the precise & imprecise trapping versions of // cvtql identically. 0x130, 0x530: cvtqlv({{ // To avoid overflow, all the upper 32 bits must match // the sign bit of the lower 32. We code this as // checking the upper 33 bits for all 0s or all 1s. uint64_t sign_bits = Fb.uq<63:31>; if (sign_bits != 0 && sign_bits != mask(33)) fault = Integer_Overflow_Fault; Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); }}); 0x020: cpys({{ // copy sign Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; }}); 0x021: cpysn({{ // copy sign negated Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; }}); 0x022: cpyse({{ // copy sign and exponent Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; }}); 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); } } // miscellaneous mem-format ops 0x18: decode MEMFUNC { format WarnUnimpl { 0x8000: fetch(); 0xa000: fetch_m(); 0xe800: ecb(); } format MiscPrefetch { 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, {{ xc->writeHint(EA, 64, memAccessFlags); }}, IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, NO_FAULT); } format BasicOperate { 0xc000: rpcc({{ #if FULL_SYSTEM /* Rb is a fake dependency so here is a fun way to get * the parser to understand that. */ Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0); #else Ra = curTick; #endif }}); // All of the barrier instructions below do nothing in // their execute() methods (hence the empty code blocks). // All of their functionality is hard-coded in the // pipeline based on the flags IsSerializing, // IsMemBarrier, and IsWriteBarrier. In the current // detailed CPU model, the execute() function only gets // called at fetch, so there's no way to generate pipeline // behavior at any other stage. Once we go to an // exec-in-exec CPU model we should be able to get rid of // these flags and implement this behavior via the // execute() methods. // trapb is just a barrier on integer traps, where excb is // a barrier on integer and FP traps. "EXCB is thus a // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat // them the same though. 0x0000: trapb({{ }}, IsSerializing, No_OpClass); 0x0400: excb({{ }}, IsSerializing, No_OpClass); 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); } #if FULL_SYSTEM format BasicOperate { 0xe000: rc({{ Ra = xc->readIntrFlag(); xc->setIntrFlag(0); }}, IsNonSpeculative); 0xf000: rs({{ Ra = xc->readIntrFlag(); xc->setIntrFlag(1); }}, IsNonSpeculative); } #else format FailUnimpl { 0xe000: rc(); 0xf000: rs(); } #endif } #if FULL_SYSTEM 0x00: CallPal::call_pal({{ if (!palValid || (palPriv && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { // invalid pal function code, or attempt to do privileged // PAL call in non-kernel mode fault = Unimplemented_Opcode_Fault; } else { // check to see if simulator wants to do something special // on this PAL call (including maybe suppress it) bool dopal = xc->simPalCheck(palFunc); if (dopal) { AlphaISA::swap_palshadow(&xc->xcBase()->regs, true); xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; } } }}, IsNonSpeculative); #else 0x00: decode PALFUNC { format EmulatedCallPal { 0x00: halt ({{ SimExit(curTick, "halt instruction encountered"); }}, IsNonSpeculative); 0x83: callsys({{ xc->syscall(); }}, IsNonSpeculative); // Read uniq reg into ABI return value register (r0) 0x9e: rduniq({{ R0 = Runiq; }}); // Write uniq reg with value from ABI arg register (r16) 0x9f: wruniq({{ Runiq = R16; }}); } } #endif #if FULL_SYSTEM format HwLoadStore { 0x1b: decode HW_LDST_QUAD { 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); } 0x1f: decode HW_LDST_COND { 0: decode HW_LDST_QUAD { 0: hw_st({{ EA = (Rb + disp) & ~3; }}, {{ Mem.ul = Ra<31:0>; }}, L); 1: hw_st({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}, Q); } 1: FailUnimpl::hw_st_cond(); } } format HwMoveIPR { 0x19: hw_mfpr({{ // this instruction is only valid in PAL mode if (!xc->inPalMode()) { fault = Unimplemented_Opcode_Fault; } else { Ra = xc->readIpr(ipr_index, fault); } }}); 0x1d: hw_mtpr({{ // this instruction is only valid in PAL mode if (!xc->inPalMode()) { fault = Unimplemented_Opcode_Fault; } else { xc->setIpr(ipr_index, Ra); if (traceData) { traceData->setData(Ra); } } }}); } format BasicOperate { 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing); // M5 special opcodes use the reserved 0x01 opcode space 0x01: decode M5FUNC { 0x00: arm({{ AlphaPseudo::arm(xc->xcBase()); }}, IsNonSpeculative); 0x01: quiesce({{ AlphaPseudo::quiesce(xc->xcBase()); }}, IsNonSpeculative); 0x10: ivlb({{ AlphaPseudo::ivlb(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x11: ivle({{ AlphaPseudo::ivle(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x20: m5exit_old({{ AlphaPseudo::m5exit_old(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x21: m5exit({{ AlphaPseudo::m5exit(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); 0x40: resetstats({{ AlphaPseudo::resetstats(xc->xcBase()); }}, IsNonSpeculative); 0x41: dumpstats({{ AlphaPseudo::dumpstats(xc->xcBase()); }}, IsNonSpeculative); 0x42: dumpresetstats({{ AlphaPseudo::dumpresetstats(xc->xcBase()); }}, IsNonSpeculative); 0x43: m5checkpoint({{ AlphaPseudo::m5checkpoint(xc->xcBase()); }}, IsNonSpeculative); 0x50: m5readfile({{ AlphaPseudo::readfile(xc->xcBase()); }}, IsNonSpeculative); 0x51: m5break({{ AlphaPseudo::debugbreak(xc->xcBase()); }}, IsNonSpeculative); 0x52: m5switchcpu({{ AlphaPseudo::switchcpu(xc->xcBase()); }}, IsNonSpeculative); 0x53: m5addsymbol({{ AlphaPseudo::addsymbol(xc->xcBase()); }}, IsNonSpeculative); } } #endif }