# Copyright (c) 2010-2012 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2010-2011 Advanced Micro Devices, Inc. # Copyright (c) 2006-2008 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Kevin Lim from m5.objects import * from Benchmarks import * from m5.util import convert class CowIdeDisk(IdeDisk): image = CowDiskImage(child=RawDiskImage(read_only=True), read_only=False) def childImage(self, ci): self.image.child.image_file = ci class MemBus(Bus): badaddr_responder = BadAddr() default = Self.badaddr_responder.pio def makeLinuxAlphaSystem(mem_mode, mdesc = None): IO_address_space_base = 0x80000000000 class BaseTsunami(Tsunami): ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0) ide = IdeController(disks=[Parent.disk0, Parent.disk2], pci_func=0, pci_dev=0, pci_bus=0) self = LinuxAlphaSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = Bus(bus_id=0) self.membus = MemBus(bus_id=1) # By default the bridge responds to all addresses above the I/O # base address (including the PCI config space) self.bridge = Bridge(delay='50ns', nack_delay='4ns', ranges = [AddrRange(IO_address_space_base, Addr.max)]) self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem())) self.bridge.master = self.iobus.port self.bridge.slave = self.membus.port self.physmem.port = self.membus.port self.disk0 = CowIdeDisk(driveID='master') self.disk2 = CowIdeDisk(driveID='master') self.disk0.childImage(mdesc.disk()) self.disk2.childImage(disk('linux-bigswap2.img')) self.tsunami = BaseTsunami() self.tsunami.attachIO(self.iobus) self.tsunami.ide.pio = self.iobus.port self.tsunami.ide.config = self.iobus.port self.tsunami.ide.dma = self.iobus.port self.tsunami.ethernet.pio = self.iobus.port self.tsunami.ethernet.config = self.iobus.port self.tsunami.ethernet.dma = self.iobus.port self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(), read_only = True)) self.intrctrl = IntrControl() self.mem_mode = mem_mode self.terminal = Terminal() self.kernel = binary('vmlinux') self.pal = binary('ts_osfpal') self.console = binary('console') self.boot_osflags = 'root=/dev/hda1 console=ttyS0' self.system_port = self.membus.port return self def makeLinuxAlphaRubySystem(mem_mode, mdesc = None): class BaseTsunami(Tsunami): ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0) ide = IdeController(disks=[Parent.disk0, Parent.disk2], pci_func=0, pci_dev=0, pci_bus=0) physmem = PhysicalMemory(range = AddrRange(mdesc.mem())) self = LinuxAlphaSystem(physmem = physmem) if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() # Create pio bus to connect all device pio ports to rubymem's pio port self.piobus = Bus(bus_id=0) # # Pio functional accesses from devices need direct access to memory # RubyPort currently does support functional accesses. Therefore provide # the piobus a direct connection to physical memory # self.piobus.port = physmem.port self.disk0 = CowIdeDisk(driveID='master') self.disk2 = CowIdeDisk(driveID='master') self.disk0.childImage(mdesc.disk()) self.disk2.childImage(disk('linux-bigswap2.img')) self.tsunami = BaseTsunami() self.tsunami.attachIO(self.piobus) self.tsunami.ide.pio = self.piobus.port self.tsunami.ide.config = self.piobus.port self.tsunami.ide.dma = self.piobus.port self.tsunami.ethernet.pio = self.piobus.port self.tsunami.ethernet.config = self.piobus.port self.tsunami.ethernet.dma = self.piobus.port # # Store the dma devices for later connection to dma ruby ports. # Append an underscore to dma_devices to avoid the SimObjectVector check. # self._dma_devices = [self.tsunami.ide, self.tsunami.ethernet] self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(), read_only = True)) self.intrctrl = IntrControl() self.mem_mode = mem_mode self.terminal = Terminal() self.kernel = binary('vmlinux') self.pal = binary('ts_osfpal') self.console = binary('console') self.boot_osflags = 'root=/dev/hda1 console=ttyS0' return self def makeSparcSystem(mem_mode, mdesc = None): # Constants from iob.cc and uart8250.cc iob_man_addr = 0x9800000000 uart_pio_size = 8 class CowMmDisk(MmDisk): image = CowDiskImage(child=RawDiskImage(read_only=True), read_only=False) def childImage(self, ci): self.image.child.image_file = ci self = SparcSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = Bus(bus_id=0) self.membus = MemBus(bus_id=1) self.bridge = Bridge(delay='50ns', nack_delay='4ns') self.t1000 = T1000() self.t1000.attachOnChipIO(self.membus) self.t1000.attachIO(self.iobus) self.physmem = PhysicalMemory(range = AddrRange(Addr('1MB'), size = '64MB'), zero = True) self.physmem2 = PhysicalMemory(range = AddrRange(Addr('2GB'), size ='256MB'), zero = True) self.bridge.master = self.iobus.port self.bridge.slave = self.membus.port self.physmem.port = self.membus.port self.physmem2.port = self.membus.port self.rom.port = self.membus.port self.nvram.port = self.membus.port self.hypervisor_desc.port = self.membus.port self.partition_desc.port = self.membus.port self.intrctrl = IntrControl() self.disk0 = CowMmDisk() self.disk0.childImage(disk('disk.s10hw2')) self.disk0.pio = self.iobus.port # The puart0 and hvuart are placed on the IO bus, so create ranges # for them. The remaining IO range is rather fragmented, so poke # holes for the iob and partition descriptors etc. self.bridge.ranges = \ [ AddrRange(self.t1000.puart0.pio_addr, self.t1000.puart0.pio_addr + uart_pio_size - 1), AddrRange(self.disk0.pio_addr, self.t1000.fake_jbi.pio_addr + self.t1000.fake_jbi.pio_size - 1), AddrRange(self.t1000.fake_clk.pio_addr, iob_man_addr - 1), AddrRange(self.t1000.fake_l2_1.pio_addr, self.t1000.fake_ssi.pio_addr + self.t1000.fake_ssi.pio_size - 1), AddrRange(self.t1000.hvuart.pio_addr, self.t1000.hvuart.pio_addr + uart_pio_size - 1) ] self.reset_bin = binary('reset_new.bin') self.hypervisor_bin = binary('q_new.bin') self.openboot_bin = binary('openboot_new.bin') self.nvram_bin = binary('nvram1') self.hypervisor_desc_bin = binary('1up-hv.bin') self.partition_desc_bin = binary('1up-md.bin') self.system_port = self.membus.port return self def makeArmSystem(mem_mode, machine_type, mdesc = None, bare_metal=False): assert machine_type if bare_metal: self = ArmSystem() else: self = LinuxArmSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = Bus(bus_id=0) self.membus = MemBus(bus_id=1) self.membus.badaddr_responder.warn_access = "warn" self.bridge = Bridge(delay='50ns', nack_delay='4ns') self.bridge.master = self.iobus.port self.bridge.slave = self.membus.port self.mem_mode = mem_mode if machine_type == "RealView_PBX": self.realview = RealViewPBX() elif machine_type == "RealView_EB": self.realview = RealViewEB() elif machine_type == "VExpress_ELT": self.realview = VExpress_ELT() else: print "Unknown Machine Type" sys.exit(1) self.cf0 = CowIdeDisk(driveID='master') self.cf0.childImage(mdesc.disk()) # default to an IDE controller rather than a CF one # assuming we've got one try: self.realview.ide.disks = [self.cf0] except: self.realview.cf_ctrl.disks = [self.cf0] if bare_metal: # EOT character on UART will end the simulation self.realview.uart.end_on_eot = True self.physmem = PhysicalMemory(range = AddrRange(Addr(mdesc.mem())), zero = True) else: self.kernel = binary('vmlinux.arm.smp.fb.2.6.38.8') self.machine_type = machine_type if convert.toMemorySize(mdesc.mem()) > convert.toMemorySize('256MB'): print "The currently implemented ARM platforms only easily support 256MB of DRAM" print "It might be possible to get some more by using 256MB@0x30000000, but this" print "is untested and may require some heroics" boot_flags = 'earlyprintk console=ttyAMA0 lpj=19988480 norandmaps ' + \ 'rw loglevel=8 mem=%s root=/dev/sda1' % mdesc.mem() self.physmem = PhysicalMemory(range = AddrRange(Addr(mdesc.mem())), zero = True) self.nvmem = PhysicalMemory(range = AddrRange(Addr('2GB'), size = '64MB'), zero = True) self.nvmem.port = self.membus.port self.boot_loader = binary('boot.arm') self.boot_loader_mem = self.nvmem self.gic_cpu_addr = self.realview.gic.cpu_addr self.flags_addr = self.realview.realview_io.pio_addr + 0x30 if mdesc.disk().lower().count('android'): boot_flags += " init=/init " self.boot_osflags = boot_flags self.physmem.port = self.membus.port self.realview.attachOnChipIO(self.membus, self.bridge) self.realview.attachIO(self.iobus) self.intrctrl = IntrControl() self.terminal = Terminal() self.vncserver = VncServer() self.system_port = self.membus.port return self def makeLinuxMipsSystem(mem_mode, mdesc = None): class BaseMalta(Malta): ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0) ide = IdeController(disks=[Parent.disk0, Parent.disk2], pci_func=0, pci_dev=0, pci_bus=0) self = LinuxMipsSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = Bus(bus_id=0) self.membus = MemBus(bus_id=1) self.bridge = Bridge(delay='50ns', nack_delay='4ns') self.physmem = PhysicalMemory(range = AddrRange('1GB')) self.bridge.master = self.iobus.port self.bridge.slave = self.membus.port self.physmem.port = self.membus.port self.disk0 = CowIdeDisk(driveID='master') self.disk2 = CowIdeDisk(driveID='master') self.disk0.childImage(mdesc.disk()) self.disk2.childImage(disk('linux-bigswap2.img')) self.malta = BaseMalta() self.malta.attachIO(self.iobus) self.malta.ide.pio = self.iobus.port self.malta.ide.config = self.iobus.port self.malta.ide.dma = self.iobus.port self.malta.ethernet.pio = self.iobus.port self.malta.ethernet.config = self.iobus.port self.malta.ethernet.dma = self.iobus.port self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(), read_only = True)) self.intrctrl = IntrControl() self.mem_mode = mem_mode self.terminal = Terminal() self.kernel = binary('mips/vmlinux') self.console = binary('mips/console') self.boot_osflags = 'root=/dev/hda1 console=ttyS0' self.system_port = self.membus.port return self def x86IOAddress(port): IO_address_space_base = 0x8000000000000000 return IO_address_space_base + port def connectX86ClassicSystem(x86_sys): # Constants similar to x86_traits.hh IO_address_space_base = 0x8000000000000000 pci_config_address_space_base = 0xc000000000000000 interrupts_address_space_base = 0xa000000000000000 APIC_range_size = 1 << 12; x86_sys.membus = MemBus(bus_id=1) x86_sys.physmem.port = x86_sys.membus.port # North Bridge x86_sys.iobus = Bus(bus_id=0) x86_sys.bridge = Bridge(delay='50ns', nack_delay='4ns') x86_sys.bridge.master = x86_sys.iobus.port x86_sys.bridge.slave = x86_sys.membus.port # Allow the bridge to pass through the IO APIC (two pages), # everything in the IO address range up to the local APIC, and # then the entire PCI address space and beyond x86_sys.bridge.ranges = \ [ AddrRange(x86_sys.pc.south_bridge.io_apic.pio_addr, x86_sys.pc.south_bridge.io_apic.pio_addr + APIC_range_size - 1), AddrRange(IO_address_space_base, interrupts_address_space_base - 1), AddrRange(pci_config_address_space_base, Addr.max) ] # Create a bridge from the IO bus to the memory bus to allow access to # the local APIC (two pages) x86_sys.iobridge = Bridge(delay='50ns', nack_delay='4ns') x86_sys.iobridge.slave = x86_sys.iobus.port x86_sys.iobridge.master = x86_sys.membus.port x86_sys.iobridge.ranges = [AddrRange(interrupts_address_space_base, interrupts_address_space_base + APIC_range_size - 1)] # connect the io bus x86_sys.pc.attachIO(x86_sys.iobus) x86_sys.system_port = x86_sys.membus.port def connectX86RubySystem(x86_sys): # North Bridge x86_sys.piobus = Bus(bus_id=0) # # Pio functional accesses from devices need direct access to memory # RubyPort currently does support functional accesses. Therefore provide # the piobus a direct connection to physical memory # x86_sys.piobus.port = x86_sys.physmem.port x86_sys.pc.attachIO(x86_sys.piobus) def makeX86System(mem_mode, numCPUs = 1, mdesc = None, self = None, Ruby = False): if self == None: self = X86System() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.mem_mode = mem_mode # Physical memory self.physmem = PhysicalMemory(range = AddrRange(mdesc.mem())) # Platform self.pc = Pc() # Create and connect the busses required by each memory system if Ruby: connectX86RubySystem(self) # add the ide to the list of dma devices that later need to attach to # dma controllers self._dma_devices = [self.pc.south_bridge.ide] else: connectX86ClassicSystem(self) self.intrctrl = IntrControl() # Disks disk0 = CowIdeDisk(driveID='master') disk2 = CowIdeDisk(driveID='master') disk0.childImage(mdesc.disk()) disk2.childImage(disk('linux-bigswap2.img')) self.pc.south_bridge.ide.disks = [disk0, disk2] # Add in a Bios information structure. structures = [X86SMBiosBiosInformation()] self.smbios_table.structures = structures # Set up the Intel MP table base_entries = [] ext_entries = [] for i in xrange(numCPUs): bp = X86IntelMPProcessor( local_apic_id = i, local_apic_version = 0x14, enable = True, bootstrap = (i == 0)) base_entries.append(bp) io_apic = X86IntelMPIOAPIC( id = numCPUs, version = 0x11, enable = True, address = 0xfec00000) self.pc.south_bridge.io_apic.apic_id = io_apic.id base_entries.append(io_apic) isa_bus = X86IntelMPBus(bus_id = 0, bus_type='ISA') base_entries.append(isa_bus) pci_bus = X86IntelMPBus(bus_id = 1, bus_type='PCI') base_entries.append(pci_bus) connect_busses = X86IntelMPBusHierarchy(bus_id=0, subtractive_decode=True, parent_bus=1) ext_entries.append(connect_busses) pci_dev4_inta = X86IntelMPIOIntAssignment( interrupt_type = 'INT', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 1, source_bus_irq = 0 + (4 << 2), dest_io_apic_id = io_apic.id, dest_io_apic_intin = 16) base_entries.append(pci_dev4_inta) def assignISAInt(irq, apicPin): assign_8259_to_apic = X86IntelMPIOIntAssignment( interrupt_type = 'ExtInt', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 0, source_bus_irq = irq, dest_io_apic_id = io_apic.id, dest_io_apic_intin = 0) base_entries.append(assign_8259_to_apic) assign_to_apic = X86IntelMPIOIntAssignment( interrupt_type = 'INT', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 0, source_bus_irq = irq, dest_io_apic_id = io_apic.id, dest_io_apic_intin = apicPin) base_entries.append(assign_to_apic) assignISAInt(0, 2) assignISAInt(1, 1) for i in range(3, 15): assignISAInt(i, i) self.intel_mp_table.base_entries = base_entries self.intel_mp_table.ext_entries = ext_entries def setWorkCountOptions(system, options): if options.work_item_id != None: system.work_item_id = options.work_item_id if options.work_begin_cpu_id_exit != None: system.work_begin_cpu_id_exit = options.work_begin_cpu_id_exit if options.work_end_exit_count != None: system.work_end_exit_count = options.work_end_exit_count if options.work_end_checkpoint_count != None: system.work_end_ckpt_count = options.work_end_checkpoint_count if options.work_begin_exit_count != None: system.work_begin_exit_count = options.work_begin_exit_count if options.work_begin_checkpoint_count != None: system.work_begin_ckpt_count = options.work_begin_checkpoint_count if options.work_cpus_checkpoint_count != None: system.work_cpus_ckpt_count = options.work_cpus_checkpoint_count def makeLinuxX86System(mem_mode, numCPUs = 1, mdesc = None, Ruby = False): self = LinuxX86System() # Build up the x86 system and then specialize it for Linux makeX86System(mem_mode, numCPUs, mdesc, self, Ruby) # We assume below that there's at least 1MB of memory. We'll require 2 # just to avoid corner cases. assert(self.physmem.range.second.getValue() >= 0x200000) self.e820_table.entries = \ [ # Mark the first megabyte of memory as reserved X86E820Entry(addr = 0, size = '1MB', range_type = 2), # Mark the rest as available X86E820Entry(addr = 0x100000, size = '%dB' % (self.physmem.range.second - 0x100000 + 1), range_type = 1) ] # Command line self.boot_osflags = 'earlyprintk=ttyS0 console=ttyS0 lpj=7999923 ' + \ 'root=/dev/hda1' return self def makeDualRoot(full_system, testSystem, driveSystem, dumpfile): self = Root(full_system = full_system) self.testsys = testSystem self.drivesys = driveSystem self.etherlink = EtherLink() self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface if hasattr(testSystem, 'realview'): self.etherlink.int0 = Parent.testsys.realview.ethernet.interface self.etherlink.int1 = Parent.drivesys.realview.ethernet.interface elif hasattr(testSystem, 'tsunami'): self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface else: fatal("Don't know how to connect these system together") if dumpfile: self.etherdump = EtherDump(file=dumpfile) self.etherlink.dump = Parent.etherdump return self def setMipsOptions(TestCPUClass): #CP0 Configuration TestCPUClass.CoreParams.CP0_PRId_CompanyOptions = 0 TestCPUClass.CoreParams.CP0_PRId_CompanyID = 1 TestCPUClass.CoreParams.CP0_PRId_ProcessorID = 147 TestCPUClass.CoreParams.CP0_PRId_Revision = 0 #CP0 Interrupt Control TestCPUClass.CoreParams.CP0_IntCtl_IPTI = 7 TestCPUClass.CoreParams.CP0_IntCtl_IPPCI = 7 # Config Register #TestCPUClass.CoreParams.CP0_Config_K23 = 0 # Since TLB #TestCPUClass.CoreParams.CP0_Config_KU = 0 # Since TLB TestCPUClass.CoreParams.CP0_Config_BE = 0 # Little Endian TestCPUClass.CoreParams.CP0_Config_AR = 1 # Architecture Revision 2 TestCPUClass.CoreParams.CP0_Config_AT = 0 # MIPS32 TestCPUClass.CoreParams.CP0_Config_MT = 1 # TLB MMU #TestCPUClass.CoreParams.CP0_Config_K0 = 2 # Uncached #Config 1 Register TestCPUClass.CoreParams.CP0_Config1_M = 1 # Config2 Implemented TestCPUClass.CoreParams.CP0_Config1_MMU = 63 # TLB Size # ***VERY IMPORTANT*** # Remember to modify CP0_Config1 according to cache specs # Examine file ../common/Cache.py TestCPUClass.CoreParams.CP0_Config1_IS = 1 # I-Cache Sets Per Way, 16KB cache, i.e., 1 (128) TestCPUClass.CoreParams.CP0_Config1_IL = 5 # I-Cache Line Size, default in Cache.py is 64, i.e 5 TestCPUClass.CoreParams.CP0_Config1_IA = 1 # I-Cache Associativity, default in Cache.py is 2, i.e, a value of 1 TestCPUClass.CoreParams.CP0_Config1_DS = 2 # D-Cache Sets Per Way (see below), 32KB cache, i.e., 2 TestCPUClass.CoreParams.CP0_Config1_DL = 5 # D-Cache Line Size, default is 64, i.e., 5 TestCPUClass.CoreParams.CP0_Config1_DA = 1 # D-Cache Associativity, default is 2, i.e. 1 TestCPUClass.CoreParams.CP0_Config1_C2 = 0 # Coprocessor 2 not implemented(?) TestCPUClass.CoreParams.CP0_Config1_MD = 0 # MDMX ASE not implemented in Mips32 TestCPUClass.CoreParams.CP0_Config1_PC = 1 # Performance Counters Implemented TestCPUClass.CoreParams.CP0_Config1_WR = 0 # Watch Registers Implemented TestCPUClass.CoreParams.CP0_Config1_CA = 0 # Mips16e NOT implemented TestCPUClass.CoreParams.CP0_Config1_EP = 0 # EJTag Not Implemented TestCPUClass.CoreParams.CP0_Config1_FP = 0 # FPU Implemented #Config 2 Register TestCPUClass.CoreParams.CP0_Config2_M = 1 # Config3 Implemented TestCPUClass.CoreParams.CP0_Config2_TU = 0 # Tertiary Cache Control TestCPUClass.CoreParams.CP0_Config2_TS = 0 # Tertiary Cache Sets Per Way TestCPUClass.CoreParams.CP0_Config2_TL = 0 # Tertiary Cache Line Size TestCPUClass.CoreParams.CP0_Config2_TA = 0 # Tertiary Cache Associativity TestCPUClass.CoreParams.CP0_Config2_SU = 0 # Secondary Cache Control TestCPUClass.CoreParams.CP0_Config2_SS = 0 # Secondary Cache Sets Per Way TestCPUClass.CoreParams.CP0_Config2_SL = 0 # Secondary Cache Line Size TestCPUClass.CoreParams.CP0_Config2_SA = 0 # Secondary Cache Associativity #Config 3 Register TestCPUClass.CoreParams.CP0_Config3_M = 0 # Config4 Not Implemented TestCPUClass.CoreParams.CP0_Config3_DSPP = 1 # DSP ASE Present TestCPUClass.CoreParams.CP0_Config3_LPA = 0 # Large Physical Addresses Not supported in Mips32 TestCPUClass.CoreParams.CP0_Config3_VEIC = 0 # EIC Supported TestCPUClass.CoreParams.CP0_Config3_VInt = 0 # Vectored Interrupts Implemented TestCPUClass.CoreParams.CP0_Config3_SP = 0 # Small Pages Supported (PageGrain reg. exists) TestCPUClass.CoreParams.CP0_Config3_MT = 0 # MT Not present TestCPUClass.CoreParams.CP0_Config3_SM = 0 # SmartMIPS ASE Not implemented TestCPUClass.CoreParams.CP0_Config3_TL = 0 # TraceLogic Not implemented #SRS Ctl - HSS TestCPUClass.CoreParams.CP0_SrsCtl_HSS = 3 # Four shadow register sets implemented #TestCPUClass.CoreParams.tlb = TLB() #TestCPUClass.CoreParams.UnifiedTLB = 1