/* * Copyright (c) 2011-2013 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Ali Saidi */ #include "base/loader/elf_object.hh" #include #include #include #include #include #include #include #include "base/bitfield.hh" #include "base/loader/symtab.hh" #include "base/misc.hh" #include "base/trace.hh" #include "debug/Loader.hh" #include "gelf.h" #include "sim/byteswap.hh" ObjectFile * ElfObject::tryFile(const std::string &fname, size_t len, uint8_t *data, bool skip_interp_check) { // check that header matches library version if (elf_version(EV_CURRENT) == EV_NONE) panic("wrong elf version number!"); // get a pointer to elf structure // Check that we actually have a elf file Elf *elf = elf_memory((char*)data, len); assert(elf); GElf_Ehdr ehdr; if (gelf_getehdr(elf, &ehdr) == 0) { DPRINTFR(Loader, "Not ELF\n"); elf_end(elf); return NULL; } // Detect the architecture Arch arch = UnknownArch; if (ehdr.e_machine == EM_SPARC64 || (ehdr.e_machine == EM_SPARC && ehdr.e_ident[EI_CLASS] == ELFCLASS64) || ehdr.e_machine == EM_SPARCV9) { arch = SPARC64; } else if (ehdr.e_machine == EM_SPARC32PLUS || (ehdr.e_machine == EM_SPARC && ehdr.e_ident[EI_CLASS] == ELFCLASS32)) { arch = SPARC32; } else if (ehdr.e_machine == EM_MIPS && ehdr.e_ident[EI_CLASS] == ELFCLASS32) { arch = Mips; if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) { fatal("The binary you're trying to load is compiled for big " "endian MIPS. gem5\nonly supports little endian MIPS. " "Please recompile your binary.\n"); } } else if (ehdr.e_machine == EM_X86_64 && ehdr.e_ident[EI_CLASS] == ELFCLASS64) { arch = X86_64; } else if (ehdr.e_machine == EM_386 && ehdr.e_ident[EI_CLASS] == ELFCLASS32) { arch = I386; } else if (ehdr.e_machine == EM_ARM && ehdr.e_ident[EI_CLASS] == ELFCLASS32) { arch = bits(ehdr.e_entry, 0) ? Thumb : Arm; } else if (ehdr.e_machine == EM_AARCH64 && ehdr.e_ident[EI_CLASS] == ELFCLASS64) { arch = Arm64; } else if (ehdr.e_machine == EM_RISCV) { arch = Riscv; } else if (ehdr.e_machine == EM_PPC && ehdr.e_ident[EI_CLASS] == ELFCLASS32) { arch = Power; if (ehdr.e_ident[EI_DATA] != ELFDATA2MSB) { fatal("The binary you're trying to load is compiled for " "little endian Power.\ngem5 only supports big " "endian Power. Please recompile your binary.\n"); } } else if (ehdr.e_machine == EM_PPC64) { fatal("The binary you're trying to load is compiled for 64-bit " "Power. M5\n only supports 32-bit Power. Please " "recompile your binary.\n"); } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) { // Since we don't know how to check for alpha right now, we'll // just assume if it wasn't something else and it's 64 bit, that's // what it must be. arch = Alpha; } else { warn("Unknown architecture: %d\n", ehdr.e_machine); arch = UnknownArch; } // Detect the operating system OpSys op_sys; switch (ehdr.e_ident[EI_OSABI]) { case ELFOSABI_LINUX: op_sys = Linux; break; case ELFOSABI_SOLARIS: op_sys = Solaris; break; case ELFOSABI_TRU64: op_sys = Tru64; break; case ELFOSABI_ARM: op_sys = LinuxArmOABI; break; case ELFOSABI_FREEBSD: op_sys = FreeBSD; break; default: op_sys = UnknownOpSys; } // Take a look at the .note.ABI section. // It can let us know what's what. if (op_sys == UnknownOpSys) { int sec_idx = 1; // Get the first section Elf_Scn *section = elf_getscn(elf, sec_idx); // While there are no more sections while (section && op_sys == UnknownOpSys) { GElf_Shdr shdr; gelf_getshdr(section, &shdr); char *e_str = elf_strptr(elf, ehdr.e_shstrndx, shdr.sh_name); if (shdr.sh_type == SHT_NOTE && !strcmp(".note.ABI-tag", e_str)) { // we have found a ABI note section // Check the 5th 32bit word for OS 0 == linux, 1 == hurd, // 2 == solaris, 3 == freebsd Elf_Data *raw_data = elf_rawdata(section, NULL); assert(raw_data && raw_data->d_buf); uint32_t raw_abi = ((uint32_t*)raw_data->d_buf)[4]; bool is_le = ehdr.e_ident[EI_DATA] == ELFDATA2LSB; uint32_t os_abi = is_le ? htole(raw_abi) : htobe(raw_abi); switch (os_abi) { case 0: op_sys = Linux; break; case 1: fatal("gem5 does not support the HURD ABI.\n"); case 2: op_sys = Solaris; break; case 3: op_sys = FreeBSD; break; } } // if section found if (!strcmp(".SUNW_version", e_str) || !strcmp(".stab.index", e_str)) op_sys = Solaris; section = elf_getscn(elf, ++sec_idx); } // while sections } ElfObject * result = new ElfObject(fname, len, data, arch, op_sys); // The number of headers in the file result->_programHeaderCount = ehdr.e_phnum; // Record the size of each entry result->_programHeaderSize = ehdr.e_phentsize; result->_programHeaderTable = 0; if (result->_programHeaderCount) { // If there is a program header table // Figure out the virtual address of the header table in the // final memory image. We use the program headers themselves // to translate from a file offset to the address in the image. GElf_Phdr phdr; uint64_t e_phoff = ehdr.e_phoff; for (int i = 0; i < result->_programHeaderCount; i++) { gelf_getphdr(elf, i, &phdr); // Check if we've found the segment with the headers in it if (phdr.p_offset <= e_phoff && phdr.p_offset + phdr.p_filesz > e_phoff) { result->_programHeaderTable = phdr.p_paddr + (e_phoff - phdr.p_offset); break; } } } if (!skip_interp_check) { for (int i = 0; i < ehdr.e_phnum; i++) { GElf_Phdr phdr; M5_VAR_USED void *check_p = gelf_getphdr(elf, i, &phdr); assert(check_p != nullptr); if (phdr.p_type != PT_INTERP) continue; char *interp_path = (char*)data + phdr.p_offset; int fd = open(interp_path, O_RDONLY); if (fd == -1) fatal("Unable to open dynamic executable's interpreter.\n"); struct stat sb; M5_VAR_USED int check_i = fstat(fd, &sb); assert(check_i == 0); void *mm = mmap(nullptr, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0); assert(mm != MAP_FAILED); close(fd); uint8_t *interp_image = (uint8_t*)mm; ObjectFile *obj = tryFile(interp_path, sb.st_size, interp_image, true); assert(obj != nullptr); result->interpreter = dynamic_cast(obj); assert(result->interpreter != nullptr); break; } } elf_end(elf); return result; } ElfObject::ElfObject(const std::string &_filename, size_t _len, uint8_t *_data, Arch _arch, OpSys _op_sys) : ObjectFile(_filename, _len, _data, _arch, _op_sys), _programHeaderTable(0), _programHeaderSize(0), _programHeaderCount(0), interpreter(nullptr), ldBias(0), relocate(true), ldMin(std::numeric_limits::max()), ldMax(std::numeric_limits::min()) { // check that header matches library version if (elf_version(EV_CURRENT) == EV_NONE) panic("wrong elf version number!"); // get a pointer to elf structure Elf *elf = elf_memory((char*)fileData,len); assert(elf); // Check that we actually have a elf file GElf_Ehdr ehdr; if (gelf_getehdr(elf, &ehdr) ==0) { panic("Not ELF, shouldn't be here"); } entry = ehdr.e_entry; // initialize segment sizes to 0 in case they're not present text.size = data.size = bss.size = 0; text.baseAddr = data.baseAddr = bss.baseAddr = 0; int sec_idx = 1; // The first address of some important sections. Addr text_sec_start = 0; Addr data_sec_start = 0; Addr bss_sec_start = 0; // Get the first section Elf_Scn *section = elf_getscn(elf, sec_idx); // Find the beginning of the most interesting sections. while (section) { GElf_Shdr shdr; gelf_getshdr(section, &shdr); char *sec_name = elf_strptr(elf, ehdr.e_shstrndx, shdr.sh_name); if (sec_name) { if (!strcmp(".text", sec_name)) { text_sec_start = shdr.sh_addr; } else if (!strcmp(".data", sec_name)) { data_sec_start = shdr.sh_addr; } else if (!strcmp(".bss", sec_name)) { bss_sec_start = shdr.sh_addr; } } else { Elf_Error errorNum = (Elf_Error)elf_errno(); if (errorNum != ELF_E_NONE) { const char *errorMessage = elf_errmsg(errorNum); fatal("Error from libelf: %s.\n", errorMessage); } } section = elf_getscn(elf, ++sec_idx); } // Go through all the segments in the program, record them, and scrape // out information about the text, data, and bss areas needed by other // code. for (int i = 0; i < ehdr.e_phnum; ++i) { GElf_Phdr phdr; if (gelf_getphdr(elf, i, &phdr) == 0) { panic("gelf_getphdr failed for segment %d.", i); } // for now we don't care about non-loadable segments if (!(phdr.p_type & PT_LOAD)) continue; ldMin = std::min(ldMin, phdr.p_vaddr); ldMax = std::max(ldMax, phdr.p_vaddr + phdr.p_memsz); // Check to see if this segment contains the bss section. if (phdr.p_paddr <= bss_sec_start && phdr.p_paddr + phdr.p_memsz > bss_sec_start && phdr.p_memsz - phdr.p_filesz > 0) { bss.baseAddr = phdr.p_paddr + phdr.p_filesz; bss.size = phdr.p_memsz - phdr.p_filesz; bss.fileImage = NULL; } // Check to see if this is the text or data segment if (phdr.p_vaddr <= text_sec_start && phdr.p_vaddr + phdr.p_filesz > text_sec_start) { // If this value is nonzero, we need to flip the relocate flag. if (phdr.p_vaddr != 0) relocate = false; text.baseAddr = phdr.p_paddr; text.size = phdr.p_filesz; text.fileImage = fileData + phdr.p_offset; } else if (phdr.p_vaddr <= data_sec_start && phdr.p_vaddr + phdr.p_filesz > data_sec_start) { data.baseAddr = phdr.p_paddr; data.size = phdr.p_filesz; data.fileImage = fileData + phdr.p_offset; } else { // If it's none of the above but is loadable, // load the filesize worth of data Segment extra; extra.baseAddr = phdr.p_paddr; extra.size = phdr.p_filesz; extra.fileImage = fileData + phdr.p_offset; extraSegments.push_back(extra); } } // should have found at least one loadable segment warn_if(text.size == 0, "Empty .text segment in '%s'. ELF file corrupted?\n", filename); DPRINTFR(Loader, "text: 0x%x %d\ndata: 0x%x %d\nbss: 0x%x %d\n", text.baseAddr, text.size, data.baseAddr, data.size, bss.baseAddr, bss.size); elf_end(elf); // We will actually read the sections when we need to load them } bool ElfObject::loadSomeSymbols(SymbolTable *symtab, int binding, Addr mask, Addr base, Addr offset) { if (!symtab) return false; // check that header matches library version if (elf_version(EV_CURRENT) == EV_NONE) panic("wrong elf version number!"); // get a pointer to elf structure Elf *elf = elf_memory((char*)fileData,len); assert(elf != NULL); // Get the first section int sec_idx = 1; // there is a 0 but it is nothing, go figure Elf_Scn *section = elf_getscn(elf, sec_idx); // While there are no more sections bool found = false; while (section != NULL) { GElf_Shdr shdr; gelf_getshdr(section, &shdr); if (shdr.sh_type == SHT_SYMTAB) { found = true; Elf_Data *data = elf_getdata(section, NULL); int count = shdr.sh_size / shdr.sh_entsize; DPRINTF(Loader, "Found Symbol Table, %d symbols present\n", count); // loop through all the symbols, only loading global ones for (int i = 0; i < count; ++i) { GElf_Sym sym; gelf_getsym(data, i, &sym); if (GELF_ST_BIND(sym.st_info) == binding) { char *sym_name = elf_strptr(elf, shdr.sh_link, sym.st_name); if (sym_name && sym_name[0] != '$') { Addr value = sym.st_value - base + offset; if (symtab->insert(value & mask, sym_name)) { DPRINTF(Loader, "Symbol: %-40s value %#x\n", sym_name, value); } } } } } ++sec_idx; section = elf_getscn(elf, sec_idx); } elf_end(elf); return found; } bool ElfObject::loadAllSymbols(SymbolTable *symtab, Addr base, Addr offset, Addr addr_mask) { return (loadGlobalSymbols(symtab, base, offset, addr_mask) && loadLocalSymbols(symtab, base, offset, addr_mask) && loadWeakSymbols(symtab, base, offset, addr_mask)); } bool ElfObject::loadGlobalSymbols(SymbolTable *symtab, Addr base, Addr offset, Addr addr_mask) { if (interpreter) { interpreter->loadSomeSymbols(symtab, STB_GLOBAL, addr_mask, base, offset); } return loadSomeSymbols(symtab, STB_GLOBAL, addr_mask, base, offset); } bool ElfObject::loadLocalSymbols(SymbolTable *symtab, Addr base, Addr offset, Addr addr_mask) { if (interpreter) { interpreter->loadSomeSymbols(symtab, STB_LOCAL, addr_mask, base, offset); } return loadSomeSymbols(symtab, STB_LOCAL, addr_mask, base, offset); } bool ElfObject::loadWeakSymbols(SymbolTable *symtab, Addr base, Addr offset, Addr addr_mask) { if (interpreter) { interpreter->loadSomeSymbols(symtab, STB_WEAK, addr_mask, base, offset); } return loadSomeSymbols(symtab, STB_WEAK, addr_mask, base, offset); } bool ElfObject::loadSections(PortProxy& mem_proxy, Addr addr_mask, Addr offset) { if (!ObjectFile::loadSections(mem_proxy, addr_mask, offset)) return false; for (auto seg : extraSegments) { if (!loadSection(&seg, mem_proxy, addr_mask, offset)) { return false; } } if (interpreter) interpreter->loadSections(mem_proxy, addr_mask, offset); return true; } void ElfObject::getSections() { assert(!sectionNames.size()); // check that header matches library version if (elf_version(EV_CURRENT) == EV_NONE) panic("wrong elf version number!"); // get a pointer to elf structure Elf *elf = elf_memory((char*)fileData,len); assert(elf != NULL); // Check that we actually have a elf file GElf_Ehdr ehdr; if (gelf_getehdr(elf, &ehdr) ==0) { panic("Not ELF, shouldn't be here"); } // Get the first section int sec_idx = 1; // there is a 0 but it is nothing, go figure Elf_Scn *section = elf_getscn(elf, sec_idx); // While there are no more sections while (section) { GElf_Shdr shdr; gelf_getshdr(section, &shdr); sectionNames.insert(elf_strptr(elf, ehdr.e_shstrndx, shdr.sh_name)); section = elf_getscn(elf, ++sec_idx); } // while sections } bool ElfObject::sectionExists(std::string sec) { if (!sectionNames.size()) getSections(); return sectionNames.find(sec) != sectionNames.end(); } void ElfObject::updateBias(Addr bias_addr) { // Record the bias. ldBias = bias_addr; // Patch the entry point with bias_addr. entry += bias_addr; // Patch segments with the bias_addr. text.baseAddr += bias_addr; data.baseAddr += bias_addr; bss.baseAddr += bias_addr; for (auto &segment : extraSegments) segment.baseAddr += bias_addr; }