/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "base/cprintf.hh" #include "base/statistics.hh" #include "base/timebuf.hh" #include "mem/cache/cache.hh" // for dynamic cast #include "mem/mem_interface.hh" #include "sim/builder.hh" #include "sim/sim_events.hh" #include "sim/stats.hh" #include "cpu/o3/alpha_cpu.hh" #include "cpu/o3/alpha_params.hh" #include "cpu/o3/comm.hh" #ifdef FULL_SYSTEM #include "arch/alpha/osfpal.hh" #include "arch/alpha/isa_traits.hh" //#include "arch/alpha/ev5.hh" //using namespace EV5; #endif template AlphaFullCPU::AlphaFullCPU(Params ¶ms) : FullO3CPU(params) { DPRINTF(FullCPU, "AlphaFullCPU: Creating AlphaFullCPU object.\n"); this->fetch.setCPU(this); this->decode.setCPU(this); this->rename.setCPU(this); this->iew.setCPU(this); this->commit.setCPU(this); this->rob.setCPU(this); } template void AlphaFullCPU::regStats() { // Register stats for everything that has stats. this->fullCPURegStats(); this->fetch.regStats(); this->decode.regStats(); this->rename.regStats(); this->iew.regStats(); this->commit.regStats(); } #ifndef FULL_SYSTEM // Will probably need to know which thread is calling syscall // Will need to pass that information in to the DynInst when it is constructed, // so that this call can be made with the proper thread number. template void AlphaFullCPU::syscall(short thread_num) { DPRINTF(FullCPU, "AlphaFullCPU: Syscall() called.\n\n"); // Commit stage needs to run as well. this->commit.tick(); squashStages(); // Temporarily increase this by one to account for the syscall // instruction. ++(this->funcExeInst); // Copy over all important state to xc once all the unrolling is done. copyToXC(); // This is hardcoded to thread 0 while the CPU is only single threaded. this->thread[0]->syscall(); // Copy over all important state back to CPU. copyFromXC(); // Decrease funcExeInst by one as the normal commit will handle // incrememnting it. --(this->funcExeInst); } // This is not a pretty function, and should only be used if it is necessary // to fake having everything squash all at once (ie for non-full system // syscalls). Maybe put this at the FullCPU level? template void AlphaFullCPU::squashStages() { InstSeqNum rob_head = this->rob.readHeadSeqNum(); // Now hack the time buffer to put this sequence number in the places // where the stages might read it. for (int i = 0; i < 5; ++i) { this->timeBuffer.access(-i)->commitInfo.doneSeqNum = rob_head; } this->fetch.squash(this->rob.readHeadNextPC()); this->fetchQueue.advance(); this->decode.squash(); this->decodeQueue.advance(); this->rename.squash(); this->renameQueue.advance(); this->renameQueue.advance(); // Be sure to advance the IEW queues so that the commit stage doesn't // try to set an instruction as completed at the same time that it // might be deleting it. this->iew.squash(); this->iewQueue.advance(); this->iewQueue.advance(); // Needs to tell the LSQ to write back all of its data this->iew.lsqWriteback(); this->rob.squash(rob_head); this->commit.setSquashing(); // Now hack the time buffer to clear the sequence numbers in the places // where the stages might read it.? for (int i = 0; i < 5; ++i) { this->timeBuffer.access(-i)->commitInfo.doneSeqNum = 0; } } #endif // FULL_SYSTEM template void AlphaFullCPU::copyToXC() { PhysRegIndex renamed_reg; // First loop through the integer registers. for (int i = 0; i < AlphaISA::NumIntRegs; ++i) { renamed_reg = this->renameMap.lookup(i); this->xc->regs.intRegFile[i] = this->regFile.readIntReg(renamed_reg); DPRINTF(FullCPU, "FullCPU: Copying register %i, has data %lli.\n", renamed_reg, this->regFile.intRegFile[renamed_reg]); } // Then loop through the floating point registers. for (int i = 0; i < AlphaISA::NumFloatRegs; ++i) { renamed_reg = this->renameMap.lookup(i + AlphaISA::FP_Base_DepTag); this->xc->regs.floatRegFile.d[i] = this->regFile.readFloatRegDouble(renamed_reg); this->xc->regs.floatRegFile.q[i] = this->regFile.readFloatRegInt(renamed_reg); } this->xc->regs.miscRegs.fpcr = this->regFile.miscRegs.fpcr; this->xc->regs.miscRegs.uniq = this->regFile.miscRegs.uniq; this->xc->regs.miscRegs.lock_flag = this->regFile.miscRegs.lock_flag; this->xc->regs.miscRegs.lock_addr = this->regFile.miscRegs.lock_addr; this->xc->regs.pc = this->rob.readHeadPC(); this->xc->regs.npc = this->xc->regs.pc+4; this->xc->func_exe_inst = this->funcExeInst; } // This function will probably mess things up unless the ROB is empty and // there are no instructions in the pipeline. template void AlphaFullCPU::copyFromXC() { PhysRegIndex renamed_reg; // First loop through the integer registers. for (int i = 0; i < AlphaISA::NumIntRegs; ++i) { renamed_reg = this->renameMap.lookup(i); DPRINTF(FullCPU, "FullCPU: Copying over register %i, had data %lli, " "now has data %lli.\n", renamed_reg, this->regFile.intRegFile[renamed_reg], this->xc->regs.intRegFile[i]); this->regFile.setIntReg(renamed_reg, this->xc->regs.intRegFile[i]); } // Then loop through the floating point registers. for (int i = 0; i < AlphaISA::NumFloatRegs; ++i) { renamed_reg = this->renameMap.lookup(i + AlphaISA::FP_Base_DepTag); this->regFile.setFloatRegDouble(renamed_reg, this->xc->regs.floatRegFile.d[i]); this->regFile.setFloatRegInt(renamed_reg, this->xc->regs.floatRegFile.q[i]); } // Then loop through the misc registers. this->regFile.miscRegs.fpcr = this->xc->regs.miscRegs.fpcr; this->regFile.miscRegs.uniq = this->xc->regs.miscRegs.uniq; this->regFile.miscRegs.lock_flag = this->xc->regs.miscRegs.lock_flag; this->regFile.miscRegs.lock_addr = this->xc->regs.miscRegs.lock_addr; // Then finally set the PC and the next PC. // regFile.pc = xc->regs.pc; // regFile.npc = xc->regs.npc; this->funcExeInst = this->xc->func_exe_inst; } #ifdef FULL_SYSTEM template uint64_t * AlphaFullCPU::getIpr() { return this->regFile.getIpr(); } template uint64_t AlphaFullCPU::readIpr(int idx, Fault &fault) { return this->regFile.readIpr(idx, fault); } template Fault AlphaFullCPU::setIpr(int idx, uint64_t val) { return this->regFile.setIpr(idx, val); } template int AlphaFullCPU::readIntrFlag() { return this->regFile.readIntrFlag(); } template void AlphaFullCPU::setIntrFlag(int val) { this->regFile.setIntrFlag(val); } // Can force commit stage to squash and stuff. template Fault AlphaFullCPU::hwrei() { uint64_t *ipr = getIpr(); if (!inPalMode()) return Unimplemented_Opcode_Fault; setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]); // kernelStats.hwrei(); if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0) // AlphaISA::swap_palshadow(®s, false); this->checkInterrupts = true; // FIXME: XXX check for interrupts? XXX return No_Fault; } template bool AlphaFullCPU::simPalCheck(int palFunc) { // kernelStats.callpal(palFunc); switch (palFunc) { case PAL::halt: halt(); if (--System::numSystemsRunning == 0) new SimExitEvent("all cpus halted"); break; case PAL::bpt: case PAL::bugchk: if (this->system->breakpoint()) return false; break; } return true; } // Probably shouldn't be able to switch to the trap handler as quickly as // this. Also needs to get the exception restart address from the commit // stage. template void AlphaFullCPU::trap(Fault fault) { // Keep in mind that a trap may be initiated by fetch if there's a TLB // miss uint64_t PC = this->commit.readCommitPC(); DPRINTF(Fault, "Fault %s\n", FaultName(fault)); this->recordEvent(csprintf("Fault %s", FaultName(fault))); // kernelStats.fault(fault); if (fault == Arithmetic_Fault) panic("Arithmetic traps are unimplemented!"); typename AlphaISA::InternalProcReg *ipr = getIpr(); // exception restart address - Get the commit PC if (fault != Interrupt_Fault || !inPalMode(PC)) ipr[AlphaISA::IPR_EXC_ADDR] = PC; if (fault == Pal_Fault || fault == Arithmetic_Fault /* || fault == Interrupt_Fault && !PC_PAL(regs.pc) */) { // traps... skip faulting instruction ipr[AlphaISA::IPR_EXC_ADDR] += 4; } if (!inPalMode(PC)) swapPALShadow(true); this->regFile.setPC( ipr[AlphaISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault] ); this->regFile.setNextPC(PC + sizeof(MachInst)); } template void AlphaFullCPU::processInterrupts() { // Check for interrupts here. For now can copy the code that exists // within isa_fullsys_traits.hh. } // swap_palshadow swaps in the values of the shadow registers and // swaps them with the values of the physical registers that map to the // same logical index. template void AlphaFullCPU::swapPALShadow(bool use_shadow) { if (palShadowEnabled == use_shadow) panic("swap_palshadow: wrong PAL shadow state"); palShadowEnabled = use_shadow; // Will have to lookup in rename map to get physical registers, then // swap. } #endif // FULL_SYSTEM