# Copyright (c) 2004-2005 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import generators import os, re, sys, types, inspect import m5 panic = m5.panic from convert import * from multidict import multidict noDot = False try: import pydot except: noDot = True class Singleton(type): def __call__(cls, *args, **kwargs): if hasattr(cls, '_instance'): return cls._instance cls._instance = super(Singleton, cls).__call__(*args, **kwargs) return cls._instance ##################################################################### # # M5 Python Configuration Utility # # The basic idea is to write simple Python programs that build Python # objects corresponding to M5 SimObjects for the desired simulation # configuration. For now, the Python emits a .ini file that can be # parsed by M5. In the future, some tighter integration between M5 # and the Python interpreter may allow bypassing the .ini file. # # Each SimObject class in M5 is represented by a Python class with the # same name. The Python inheritance tree mirrors the M5 C++ tree # (e.g., SimpleCPU derives from BaseCPU in both cases, and all # SimObjects inherit from a single SimObject base class). To specify # an instance of an M5 SimObject in a configuration, the user simply # instantiates the corresponding Python object. The parameters for # that SimObject are given by assigning to attributes of the Python # object, either using keyword assignment in the constructor or in # separate assignment statements. For example: # # cache = BaseCache(size='64KB') # cache.hit_latency = 3 # cache.assoc = 8 # # The magic lies in the mapping of the Python attributes for SimObject # classes to the actual SimObject parameter specifications. This # allows parameter validity checking in the Python code. Continuing # the example above, the statements "cache.blurfl=3" or # "cache.assoc='hello'" would both result in runtime errors in Python, # since the BaseCache object has no 'blurfl' parameter and the 'assoc' # parameter requires an integer, respectively. This magic is done # primarily by overriding the special __setattr__ method that controls # assignment to object attributes. # # Once a set of Python objects have been instantiated in a hierarchy, # calling 'instantiate(obj)' (where obj is the root of the hierarchy) # will generate a .ini file. See simple-4cpu.py for an example # (corresponding to m5-test/simple-4cpu.ini). # ##################################################################### ##################################################################### # # ConfigNode/SimObject classes # # The Python class hierarchy rooted by ConfigNode (which is the base # class of SimObject, which in turn is the base class of all other M5 # SimObject classes) has special attribute behavior. In general, an # object in this hierarchy has three categories of attribute-like # things: # # 1. Regular Python methods and variables. These must start with an # underscore to be treated normally. # # 2. SimObject parameters. These values are stored as normal Python # attributes, but all assignments to these attributes are checked # against the pre-defined set of parameters stored in the class's # _params dictionary. Assignments to attributes that do not # correspond to predefined parameters, or that are not of the correct # type, incur runtime errors. # # 3. Hierarchy children. The child nodes of a ConfigNode are stored # in the node's _children dictionary, but can be accessed using the # Python attribute dot-notation (just as they are printed out by the # simulator). Children cannot be created using attribute assigment; # they must be added by specifying the parent node in the child's # constructor or using the '+=' operator. # The SimObject parameters are the most complex, for a few reasons. # First, both parameter descriptions and parameter values are # inherited. Thus parameter description lookup must go up the # inheritance chain like normal attribute lookup, but this behavior # must be explicitly coded since the lookup occurs in each class's # _params attribute. Second, because parameter values can be set # on SimObject classes (to implement default values), the parameter # checking behavior must be enforced on class attribute assignments as # well as instance attribute assignments. Finally, because we allow # class specialization via inheritance (e.g., see the L1Cache class in # the simple-4cpu.py example), we must do parameter checking even on # class instantiation. To provide all these features, we use a # metaclass to define most of the SimObject parameter behavior for # this class hierarchy. # ##################################################################### def isSimObject(value): return isinstance(value, SimObject) def isSimObjSequence(value): if not isinstance(value, (list, tuple)): return False for val in value: if not isNullPointer(val) and not isSimObject(val): return False return True def isNullPointer(value): return isinstance(value, NullSimObject) # The metaclass for ConfigNode (and thus for everything that derives # from ConfigNode, including SimObject). This class controls how new # classes that derive from ConfigNode are instantiated, and provides # inherited class behavior (just like a class controls how instances # of that class are instantiated, and provides inherited instance # behavior). class MetaSimObject(type): # Attributes that can be set only at initialization time init_keywords = { 'abstract' : types.BooleanType, 'type' : types.StringType } # Attributes that can be set any time keywords = { 'check' : types.FunctionType, 'children' : types.ListType } # __new__ is called before __init__, and is where the statements # in the body of the class definition get loaded into the class's # __dict__. We intercept this to filter out parameter assignments # and only allow "private" attributes to be passed to the base # __new__ (starting with underscore). def __new__(mcls, name, bases, dict): # Copy "private" attributes (including special methods such as __new__) # to the official dict. Everything else goes in _init_dict to be # filtered in __init__. cls_dict = {} for key,val in dict.items(): if key.startswith('_'): cls_dict[key] = val del dict[key] cls_dict['_init_dict'] = dict return super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict) # initialization def __init__(cls, name, bases, dict): super(MetaSimObject, cls).__init__(name, bases, dict) # initialize required attributes cls._params = multidict() cls._values = multidict() cls._anon_subclass_counter = 0 # We don't support multiple inheritance. If you want to, you # must fix multidict to deal with it properly. if len(bases) > 1: raise TypeError, "SimObjects do not support multiple inheritance" base = bases[0] if isinstance(base, MetaSimObject): cls._params.parent = base._params cls._values.parent = base._values # If your parent has a value in it that's a config node, clone # it. Do this now so if we update any of the values' # attributes we are updating the clone and not the original. for key,val in base._values.iteritems(): # don't clone if (1) we're about to overwrite it with # a local setting or (2) we've already cloned a copy # from an earlier (more derived) base if cls._init_dict.has_key(key) or cls._values.has_key(key): continue if isSimObject(val): cls._values[key] = val() elif isSimObjSequence(val) and len(val): cls._values[key] = [ v() for v in val ] # now process remaining _init_dict items for key,val in cls._init_dict.items(): if isinstance(val, (types.FunctionType, types.TypeType)): type.__setattr__(cls, key, val) # param descriptions elif isinstance(val, ParamDesc): cls._new_param(key, val) # init-time-only keywords elif cls.init_keywords.has_key(key): cls._set_keyword(key, val, cls.init_keywords[key]) # default: use normal path (ends up in __setattr__) else: setattr(cls, key, val) def _set_keyword(cls, keyword, val, kwtype): if not isinstance(val, kwtype): raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \ (keyword, type(val), kwtype) if isinstance(val, types.FunctionType): val = classmethod(val) type.__setattr__(cls, keyword, val) def _new_param(cls, name, value): cls._params[name] = value if hasattr(value, 'default'): setattr(cls, name, value.default) # Set attribute (called on foo.attr = value when foo is an # instance of class cls). def __setattr__(cls, attr, value): # normal processing for private attributes if attr.startswith('_'): type.__setattr__(cls, attr, value) return if cls.keywords.has_key(attr): cls._set_keyword(attr, value, cls.keywords[attr]) return # must be SimObject param param = cls._params.get(attr, None) if param: # It's ok: set attribute by delegating to 'object' class. try: cls._values[attr] = param.convert(value) except Exception, e: msg = "%s\nError setting param %s.%s to %s\n" % \ (e, cls.__name__, attr, value) e.args = (msg, ) raise # I would love to get rid of this elif isSimObject(value) or isSimObjSequence(value): cls._values[attr] = value else: raise AttributeError, \ "Class %s has no parameter %s" % (cls.__name__, attr) def __getattr__(cls, attr): if cls._values.has_key(attr): return cls._values[attr] raise AttributeError, \ "object '%s' has no attribute '%s'" % (cls.__name__, attr) # The ConfigNode class is the root of the special hierarchy. Most of # the code in this class deals with the configuration hierarchy itself # (parent/child node relationships). class SimObject(object): # Specify metaclass. Any class inheriting from SimObject will # get this metaclass. __metaclass__ = MetaSimObject def __init__(self, _value_parent = None, **kwargs): self._children = {} if _value_parent and type(_value_parent) != type(self): # this was called as a type conversion rather than a clone raise TypeError, "Cannot convert %s to %s" % \ (_value_parent.__class__.__name__, self.__class__.__name__) if not _value_parent: _value_parent = self.__class__ # clone values self._values = multidict(_value_parent._values) for key,val in _value_parent._values.iteritems(): if isSimObject(val): setattr(self, key, val()) elif isSimObjSequence(val) and len(val): setattr(self, key, [ v() for v in val ]) # apply attribute assignments from keyword args, if any for key,val in kwargs.iteritems(): setattr(self, key, val) def __call__(self, **kwargs): return self.__class__(_value_parent = self, **kwargs) def __getattr__(self, attr): if self._values.has_key(attr): return self._values[attr] raise AttributeError, "object '%s' has no attribute '%s'" \ % (self.__class__.__name__, attr) # Set attribute (called on foo.attr = value when foo is an # instance of class cls). def __setattr__(self, attr, value): # normal processing for private attributes if attr.startswith('_'): object.__setattr__(self, attr, value) return # must be SimObject param param = self._params.get(attr, None) if param: # It's ok: set attribute by delegating to 'object' class. try: value = param.convert(value) except Exception, e: msg = "%s\nError setting param %s.%s to %s\n" % \ (e, self.__class__.__name__, attr, value) e.args = (msg, ) raise # I would love to get rid of this elif isSimObject(value) or isSimObjSequence(value): pass else: raise AttributeError, "Class %s has no parameter %s" \ % (self.__class__.__name__, attr) # clear out old child with this name, if any self.clear_child(attr) if isSimObject(value): value.set_path(self, attr) elif isSimObjSequence(value): value = SimObjVector(value) [v.set_path(self, "%s%d" % (attr, i)) for i,v in enumerate(value)] self._values[attr] = value # this hack allows tacking a '[0]' onto parameters that may or may # not be vectors, and always getting the first element (e.g. cpus) def __getitem__(self, key): if key == 0: return self raise TypeError, "Non-zero index '%s' to SimObject" % key # clear out children with given name, even if it's a vector def clear_child(self, name): if not self._children.has_key(name): return child = self._children[name] if isinstance(child, SimObjVector): for i in xrange(len(child)): del self._children["s%d" % (name, i)] del self._children[name] def add_child(self, name, value): self._children[name] = value def set_path(self, parent, name): if not hasattr(self, '_parent'): self._parent = parent self._name = name parent.add_child(name, self) def path(self): if not hasattr(self, '_parent'): return 'root' ppath = self._parent.path() if ppath == 'root': return self._name return ppath + "." + self._name def __str__(self): return self.path() def ini_str(self): return self.path() def find_any(self, ptype): if isinstance(self, ptype): return self, True found_obj = None for child in self._children.itervalues(): if isinstance(child, ptype): if found_obj != None and child != found_obj: raise AttributeError, \ 'parent.any matched more than one: %s %s' % \ (found_obj.path, child.path) found_obj = child # search param space for pname,pdesc in self._params.iteritems(): if issubclass(pdesc.ptype, ptype): match_obj = self._values[pname] if found_obj != None and found_obj != match_obj: raise AttributeError, \ 'parent.any matched more than one: %s' % obj.path found_obj = match_obj return found_obj, found_obj != None def unproxy(self, base): return self def print_ini(self): print '[' + self.path() + ']' # .ini section header if hasattr(self, 'type') and not isinstance(self, ParamContext): print 'type=%s' % self.type child_names = self._children.keys() child_names.sort() np_child_names = [c for c in child_names \ if not isinstance(self._children[c], ParamContext)] if len(np_child_names): print 'children=%s' % ' '.join(np_child_names) param_names = self._params.keys() param_names.sort() for param in param_names: value = self._values.get(param, None) if value != None: if isproxy(value): try: value = value.unproxy(self) except: print >> sys.stderr, \ "Error in unproxying param '%s' of %s" % \ (param, self.path()) raise setattr(self, param, value) print '%s=%s' % (param, self._values[param].ini_str()) print # blank line between objects for child in child_names: self._children[child].print_ini() # generate output file for 'dot' to display as a pretty graph. # this code is currently broken. def outputDot(self, dot): label = "{%s|" % self.path if isSimObject(self.realtype): label += '%s|' % self.type if self.children: # instantiate children in same order they were added for # backward compatibility (else we can end up with cpu1 # before cpu0). for c in self.children: dot.add_edge(pydot.Edge(self.path,c.path, style="bold")) simobjs = [] for param in self.params: try: if param.value is None: raise AttributeError, 'Parameter with no value' value = param.value string = param.string(value) except Exception, e: msg = 'exception in %s:%s\n%s' % (self.name, param.name, e) e.args = (msg, ) raise if isSimObject(param.ptype) and string != "Null": simobjs.append(string) else: label += '%s = %s\\n' % (param.name, string) for so in simobjs: label += "|<%s> %s" % (so, so) dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so, tailport="w")) label += '}' dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label)) # recursively dump out children for c in self.children: c.outputDot(dot) class ParamContext(SimObject): pass ##################################################################### # # Proxy object support. # ##################################################################### class BaseProxy(object): def __init__(self, search_self, search_up): self._search_self = search_self self._search_up = search_up self._multiplier = None def __setattr__(self, attr, value): if not attr.startswith('_'): raise AttributeError, 'cannot set attribute on proxy object' super(BaseProxy, self).__setattr__(attr, value) # support multiplying proxies by constants def __mul__(self, other): if not isinstance(other, (int, float)): raise TypeError, "Proxy multiplier must be integer" if self._multiplier == None: self._multiplier = other else: # support chained multipliers self._multiplier *= other return self __rmul__ = __mul__ def _mulcheck(self, result): if self._multiplier == None: return result return result * self._multiplier def unproxy(self, base): obj = base done = False if self._search_self: result, done = self.find(obj) if self._search_up: while not done: try: obj = obj._parent except: break result, done = self.find(obj) if not done: raise AttributeError, "Can't resolve proxy '%s' from '%s'" % \ (self.path(), base.path()) if isinstance(result, BaseProxy): if result == self: raise RuntimeError, "Cycle in unproxy" result = result.unproxy(obj) return self._mulcheck(result) def getindex(obj, index): if index == None: return obj try: obj = obj[index] except TypeError: if index != 0: raise # if index is 0 and item is not subscriptable, just # use item itself (so cpu[0] works on uniprocessors) return obj getindex = staticmethod(getindex) def set_param_desc(self, pdesc): self._pdesc = pdesc class AttrProxy(BaseProxy): def __init__(self, search_self, search_up, attr): super(AttrProxy, self).__init__(search_self, search_up) self._attr = attr self._modifiers = [] def __getattr__(self, attr): # python uses __bases__ internally for inheritance if attr.startswith('_'): return super(AttrProxy, self).__getattr__(self, attr) if hasattr(self, '_pdesc'): raise AttributeError, "Attribute reference on bound proxy" self._modifiers.append(attr) return self # support indexing on proxies (e.g., Self.cpu[0]) def __getitem__(self, key): if not isinstance(key, int): raise TypeError, "Proxy object requires integer index" self._modifiers.append(key) return self def find(self, obj): try: val = getattr(obj, self._attr) except: return None, False while isproxy(val): val = val.unproxy(obj) for m in self._modifiers: if isinstance(m, str): val = getattr(val, m) elif isinstance(m, int): val = val[m] else: assert("Item must be string or integer") while isproxy(val): val = val.unproxy(obj) return val, True def path(self): p = self._attr for m in self._modifiers: if isinstance(m, str): p += '.%s' % m elif isinstance(m, int): p += '[%d]' % m else: assert("Item must be string or integer") return p class AnyProxy(BaseProxy): def find(self, obj): return obj.find_any(self._pdesc.ptype) def path(self): return 'any' def isproxy(obj): if isinstance(obj, (BaseProxy, EthernetAddr)): return True elif isinstance(obj, (list, tuple)): for v in obj: if isproxy(v): return True return False class ProxyFactory(object): def __init__(self, search_self, search_up): self.search_self = search_self self.search_up = search_up def __getattr__(self, attr): if attr == 'any': return AnyProxy(self.search_self, self.search_up) else: return AttrProxy(self.search_self, self.search_up, attr) # global objects for handling proxies Parent = ProxyFactory(search_self = False, search_up = True) Self = ProxyFactory(search_self = True, search_up = False) ##################################################################### # # Parameter description classes # # The _params dictionary in each class maps parameter names to # either a Param or a VectorParam object. These objects contain the # parameter description string, the parameter type, and the default # value (loaded from the PARAM section of the .odesc files). The # _convert() method on these objects is used to force whatever value # is assigned to the parameter to the appropriate type. # # Note that the default values are loaded into the class's attribute # space when the parameter dictionary is initialized (in # MetaConfigNode._setparams()); after that point they aren't used. # ##################################################################### # Dummy base class to identify types that are legitimate for SimObject # parameters. class ParamValue(object): # default for printing to .ini file is regular string conversion. # will be overridden in some cases def ini_str(self): return str(self) # allows us to blithely call unproxy() on things without checking # if they're really proxies or not def unproxy(self, base): return self # Regular parameter description. class ParamDesc(object): def __init__(self, ptype_str, ptype, *args, **kwargs): self.ptype_str = ptype_str # remember ptype only if it is provided if ptype != None: self.ptype = ptype if args: if len(args) == 1: self.desc = args[0] elif len(args) == 2: self.default = args[0] self.desc = args[1] else: raise TypeError, 'too many arguments' if kwargs.has_key('desc'): assert(not hasattr(self, 'desc')) self.desc = kwargs['desc'] del kwargs['desc'] if kwargs.has_key('default'): assert(not hasattr(self, 'default')) self.default = kwargs['default'] del kwargs['default'] if kwargs: raise TypeError, 'extra unknown kwargs %s' % kwargs if not hasattr(self, 'desc'): raise TypeError, 'desc attribute missing' def __getattr__(self, attr): if attr == 'ptype': try: ptype = eval(self.ptype_str, m5.__dict__) if not isinstance(ptype, type): panic("Param qualifier is not a type: %s" % self.ptype) self.ptype = ptype return ptype except NameError: pass raise AttributeError, "'%s' object has no attribute '%s'" % \ (type(self).__name__, attr) def convert(self, value): if isinstance(value, BaseProxy): value.set_param_desc(self) return value if not hasattr(self, 'ptype') and isNullPointer(value): # deferred evaluation of SimObject; continue to defer if # we're just assigning a null pointer return value if isinstance(value, self.ptype): return value if isNullPointer(value) and issubclass(self.ptype, SimObject): return value return self.ptype(value) # Vector-valued parameter description. Just like ParamDesc, except # that the value is a vector (list) of the specified type instead of a # single value. class VectorParamValue(list): def ini_str(self): return ' '.join([v.ini_str() for v in self]) def unproxy(self, base): return [v.unproxy(base) for v in self] class SimObjVector(VectorParamValue): def print_ini(self): for v in self: v.print_ini() class VectorParamDesc(ParamDesc): # Convert assigned value to appropriate type. If the RHS is not a # list or tuple, it generates a single-element list. def convert(self, value): if isinstance(value, (list, tuple)): # list: coerce each element into new list tmp_list = [ ParamDesc.convert(self, v) for v in value ] if isSimObjSequence(tmp_list): return SimObjVector(tmp_list) else: return VectorParamValue(tmp_list) else: # singleton: leave it be (could coerce to a single-element # list here, but for some historical reason we don't... return ParamDesc.convert(self, value) class ParamFactory(object): def __init__(self, param_desc_class, ptype_str = None): self.param_desc_class = param_desc_class self.ptype_str = ptype_str def __getattr__(self, attr): if self.ptype_str: attr = self.ptype_str + '.' + attr return ParamFactory(self.param_desc_class, attr) # E.g., Param.Int(5, "number of widgets") def __call__(self, *args, **kwargs): caller_frame = inspect.stack()[1][0] ptype = None try: ptype = eval(self.ptype_str, caller_frame.f_globals, caller_frame.f_locals) if not isinstance(ptype, type): raise TypeError, \ "Param qualifier is not a type: %s" % ptype except NameError: # if name isn't defined yet, assume it's a SimObject, and # try to resolve it later pass return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs) Param = ParamFactory(ParamDesc) VectorParam = ParamFactory(VectorParamDesc) ##################################################################### # # Parameter Types # # Though native Python types could be used to specify parameter types # (the 'ptype' field of the Param and VectorParam classes), it's more # flexible to define our own set of types. This gives us more control # over how Python expressions are converted to values (via the # __init__() constructor) and how these values are printed out (via # the __str__() conversion method). Eventually we'll need these types # to correspond to distinct C++ types as well. # ##################################################################### # superclass for "numeric" parameter values, to emulate math # operations in a type-safe way. e.g., a Latency times an int returns # a new Latency object. class NumericParamValue(ParamValue): def __str__(self): return str(self.value) def __float__(self): return float(self.value) # hook for bounds checking def _check(self): return def __mul__(self, other): newobj = self.__class__(self) newobj.value *= other newobj._check() return newobj __rmul__ = __mul__ def __div__(self, other): newobj = self.__class__(self) newobj.value /= other newobj._check() return newobj def __sub__(self, other): newobj = self.__class__(self) newobj.value -= other newobj._check() return newobj class Range(ParamValue): type = int # default; can be overridden in subclasses def __init__(self, *args, **kwargs): def handle_kwargs(self, kwargs): if 'end' in kwargs: self.second = self.type(kwargs.pop('end')) elif 'size' in kwargs: self.second = self.first + self.type(kwargs.pop('size')) - 1 else: raise TypeError, "Either end or size must be specified" if len(args) == 0: self.first = self.type(kwargs.pop('start')) handle_kwargs(self, kwargs) elif len(args) == 1: if kwargs: self.first = self.type(args[0]) handle_kwargs(self, kwargs) elif isinstance(args[0], Range): self.first = self.type(args[0].first) self.second = self.type(args[0].second) else: self.first = self.type(0) self.second = self.type(args[0]) - 1 elif len(args) == 2: self.first = self.type(args[0]) self.second = self.type(args[1]) else: raise TypeError, "Too many arguments specified" if kwargs: raise TypeError, "too many keywords: %s" % kwargs.keys() def __str__(self): return '%s:%s' % (self.first, self.second) # Metaclass for bounds-checked integer parameters. See CheckedInt. class CheckedIntType(type): def __init__(cls, name, bases, dict): super(CheckedIntType, cls).__init__(name, bases, dict) # CheckedInt is an abstract base class, so we actually don't # want to do any processing on it... the rest of this code is # just for classes that derive from CheckedInt. if name == 'CheckedInt': return if not (hasattr(cls, 'min') and hasattr(cls, 'max')): if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')): panic("CheckedInt subclass %s must define either\n" \ " 'min' and 'max' or 'size' and 'unsigned'\n" \ % name); if cls.unsigned: cls.min = 0 cls.max = 2 ** cls.size - 1 else: cls.min = -(2 ** (cls.size - 1)) cls.max = (2 ** (cls.size - 1)) - 1 # Abstract superclass for bounds-checked integer parameters. This # class is subclassed to generate parameter classes with specific # bounds. Initialization of the min and max bounds is done in the # metaclass CheckedIntType.__init__. class CheckedInt(NumericParamValue): __metaclass__ = CheckedIntType def _check(self): if not self.min <= self.value <= self.max: raise TypeError, 'Integer param out of bounds %d < %d < %d' % \ (self.min, self.value, self.max) def __init__(self, value): if isinstance(value, str): self.value = toInteger(value) elif isinstance(value, (int, long)): self.value = long(value) self._check() class Int(CheckedInt): size = 32; unsigned = False class Unsigned(CheckedInt): size = 32; unsigned = True class Int8(CheckedInt): size = 8; unsigned = False class UInt8(CheckedInt): size = 8; unsigned = True class Int16(CheckedInt): size = 16; unsigned = False class UInt16(CheckedInt): size = 16; unsigned = True class Int32(CheckedInt): size = 32; unsigned = False class UInt32(CheckedInt): size = 32; unsigned = True class Int64(CheckedInt): size = 64; unsigned = False class UInt64(CheckedInt): size = 64; unsigned = True class Counter(CheckedInt): size = 64; unsigned = True class Tick(CheckedInt): size = 64; unsigned = True class TcpPort(CheckedInt): size = 16; unsigned = True class UdpPort(CheckedInt): size = 16; unsigned = True class Percent(CheckedInt): min = 0; max = 100 class Float(ParamValue, float): pass class MemorySize(CheckedInt): size = 64 unsigned = True def __init__(self, value): if isinstance(value, MemorySize): self.value = value.value else: self.value = toMemorySize(value) self._check() class Addr(CheckedInt): size = 64 unsigned = True def __init__(self, value): if isinstance(value, Addr): self.value = value.value else: try: self.value = toMemorySize(value) except TypeError: self.value = long(value) self._check() class AddrRange(Range): type = Addr # String-valued parameter. Just mixin the ParamValue class # with the built-in str class. class String(ParamValue,str): pass # Boolean parameter type. Python doesn't let you subclass bool, since # it doesn't want to let you create multiple instances of True and # False. Thus this is a little more complicated than String. class Bool(ParamValue): def __init__(self, value): try: self.value = toBool(value) except TypeError: self.value = bool(value) def __str__(self): return str(self.value) def ini_str(self): if self.value: return 'true' return 'false' def IncEthernetAddr(addr, val = 1): bytes = map(lambda x: int(x, 16), addr.split(':')) bytes[5] += val for i in (5, 4, 3, 2, 1): val,rem = divmod(bytes[i], 256) bytes[i] = rem if val == 0: break bytes[i - 1] += val assert(bytes[0] <= 255) return ':'.join(map(lambda x: '%02x' % x, bytes)) class NextEthernetAddr(object): addr = "00:90:00:00:00:01" def __init__(self, inc = 1): self.value = NextEthernetAddr.addr NextEthernetAddr.addr = IncEthernetAddr(NextEthernetAddr.addr, inc) class EthernetAddr(ParamValue): def __init__(self, value): if value == NextEthernetAddr: self.value = value return if not isinstance(value, str): raise TypeError, "expected an ethernet address and didn't get one" bytes = value.split(':') if len(bytes) != 6: raise TypeError, 'invalid ethernet address %s' % value for byte in bytes: if not 0 <= int(byte) <= 256: raise TypeError, 'invalid ethernet address %s' % value self.value = value def unproxy(self, base): if self.value == NextEthernetAddr: self.addr = self.value().value return self def __str__(self): if self.value == NextEthernetAddr: return self.addr else: return self.value # Special class for NULL pointers. Note the special check in # make_param_value() above that lets these be assigned where a # SimObject is required. # only one copy of a particular node class NullSimObject(object): __metaclass__ = Singleton def __call__(cls): return cls def _instantiate(self, parent = None, path = ''): pass def ini_str(self): return 'Null' def unproxy(self, base): return self def set_path(self, parent, name): pass def __str__(self): return 'Null' # The only instance you'll ever need... Null = NULL = NullSimObject() # Enumerated types are a little more complex. The user specifies the # type as Enum(foo) where foo is either a list or dictionary of # alternatives (typically strings, but not necessarily so). (In the # long run, the integer value of the parameter will be the list index # or the corresponding dictionary value. For now, since we only check # that the alternative is valid and then spit it into a .ini file, # there's not much point in using the dictionary.) # What Enum() must do is generate a new type encapsulating the # provided list/dictionary so that specific values of the parameter # can be instances of that type. We define two hidden internal # classes (_ListEnum and _DictEnum) to serve as base classes, then # derive the new type from the appropriate base class on the fly. # Metaclass for Enum types class MetaEnum(type): def __init__(cls, name, bases, init_dict): if init_dict.has_key('map'): if not isinstance(cls.map, dict): raise TypeError, "Enum-derived class attribute 'map' " \ "must be of type dict" # build list of value strings from map cls.vals = cls.map.keys() cls.vals.sort() elif init_dict.has_key('vals'): if not isinstance(cls.vals, list): raise TypeError, "Enum-derived class attribute 'vals' " \ "must be of type list" # build string->value map from vals sequence cls.map = {} for idx,val in enumerate(cls.vals): cls.map[val] = idx else: raise TypeError, "Enum-derived class must define "\ "attribute 'map' or 'vals'" super(MetaEnum, cls).__init__(name, bases, init_dict) def cpp_declare(cls): s = 'enum %s {\n ' % cls.__name__ s += ',\n '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals]) s += '\n};\n' return s # Base class for enum types. class Enum(ParamValue): __metaclass__ = MetaEnum vals = [] def __init__(self, value): if value not in self.map: raise TypeError, "Enum param got bad value '%s' (not in %s)" \ % (value, self.vals) self.value = value def __str__(self): return self.value ticks_per_sec = None # how big does a rounding error need to be before we warn about it? frequency_tolerance = 0.001 # 0.1% # convert a floting-point # of ticks to integer, and warn if rounding # discards too much precision def tick_check(float_ticks): if float_ticks == 0: return 0 int_ticks = int(round(float_ticks)) err = (float_ticks - int_ticks) / float_ticks if err > frequency_tolerance: print >> sys.stderr, "Warning: rounding error > tolerance" print >> sys.stderr, " %f rounded to %d" % (float_ticks, int_ticks) #raise ValueError return int_ticks def getLatency(value): if isinstance(value, Latency) or isinstance(value, Clock): return value.value elif isinstance(value, Frequency) or isinstance(value, RootClock): return 1 / value.value elif isinstance(value, str): try: return toLatency(value) except ValueError: try: return 1 / toFrequency(value) except ValueError: pass # fall through raise ValueError, "Invalid Frequency/Latency value '%s'" % value class Latency(NumericParamValue): def __init__(self, value): self.value = getLatency(value) def __getattr__(self, attr): if attr in ('latency', 'period'): return self if attr == 'frequency': return Frequency(self) raise AttributeError, "Latency object has no attribute '%s'" % attr # convert latency to ticks def ini_str(self): return str(tick_check(self.value * ticks_per_sec)) class Frequency(NumericParamValue): def __init__(self, value): self.value = 1 / getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return self if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr # convert frequency to ticks per period def ini_str(self): return self.period.ini_str() # Just like Frequency, except ini_str() is absolute # of ticks per sec (Hz). # We can't inherit from Frequency because we don't want it to be directly # assignable to a regular Frequency parameter. class RootClock(ParamValue): def __init__(self, value): self.value = 1 / getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return Frequency(self) if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr def ini_str(self): return str(tick_check(self.value)) # A generic frequency and/or Latency value. Value is stored as a latency, # but to avoid ambiguity this object does not support numeric ops (* or /). # An explicit conversion to a Latency or Frequency must be made first. class Clock(ParamValue): def __init__(self, value): self.value = getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return Frequency(self) if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr def ini_str(self): return self.period.ini_str() class NetworkBandwidth(float,ParamValue): def __new__(cls, value): val = toNetworkBandwidth(value) / 8.0 return super(cls, NetworkBandwidth).__new__(cls, val) def __str__(self): return str(self.val) def ini_str(self): return '%f' % (ticks_per_sec / float(self)) class MemoryBandwidth(float,ParamValue): def __new__(self, value): val = toMemoryBandwidth(value) return super(cls, MemoryBandwidth).__new__(cls, val) def __str__(self): return str(self.val) def ini_str(self): return '%f' % (ticks_per_sec / float(self)) # # "Constants"... handy aliases for various values. # # Some memory range specifications use this as a default upper bound. MaxAddr = Addr.max MaxTick = Tick.max AllMemory = AddrRange(0, MaxAddr) ##################################################################### # The final hook to generate .ini files. Called from configuration # script once config is built. def instantiate(root): global ticks_per_sec ticks_per_sec = float(root.clock.frequency) root.print_ini() noDot = True # temporary until we fix dot if not noDot: dot = pydot.Dot() instance.outputDot(dot) dot.orientation = "portrait" dot.size = "8.5,11" dot.ranksep="equally" dot.rank="samerank" dot.write("config.dot") dot.write_ps("config.ps") # __all__ defines the list of symbols that get exported when # 'from config import *' is invoked. Try to keep this reasonably # short to avoid polluting other namespaces. __all__ = ['SimObject', 'ParamContext', 'Param', 'VectorParam', 'Parent', 'Self', 'Enum', 'Bool', 'String', 'Float', 'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16', 'Int32', 'UInt32', 'Int64', 'UInt64', 'Counter', 'Addr', 'Tick', 'Percent', 'TcpPort', 'UdpPort', 'EthernetAddr', 'MemorySize', 'Latency', 'Frequency', 'RootClock', 'Clock', 'NetworkBandwidth', 'MemoryBandwidth', 'Range', 'AddrRange', 'MaxAddr', 'MaxTick', 'AllMemory', 'Null', 'NULL', 'NextEthernetAddr', 'instantiate']