/* * Copyright (c) 2003-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi */ #include "arch/sparc/asi.hh" #include "arch/sparc/handlers.hh" #include "arch/sparc/isa_traits.hh" #include "arch/sparc/process.hh" #include "arch/sparc/types.hh" #include "base/loader/object_file.hh" #include "base/loader/elf_object.hh" #include "base/misc.hh" #include "cpu/thread_context.hh" #include "mem/page_table.hh" #include "mem/translating_port.hh" #include "sim/system.hh" using namespace std; using namespace SparcISA; SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile, System *_system, int stdin_fd, int stdout_fd, int stderr_fd, std::vector &argv, std::vector &envp, const std::string &cwd, uint64_t _uid, uint64_t _euid, uint64_t _gid, uint64_t _egid, uint64_t _pid, uint64_t _ppid) : LiveProcess(nm, objFile, _system, stdin_fd, stdout_fd, stderr_fd, argv, envp, cwd, _uid, _euid, _gid, _egid, _pid, _ppid) { // XXX all the below need to be updated for SPARC - Ali brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize(); brk_point = roundUp(brk_point, VMPageSize); // Set pointer for next thread stack. Reserve 8M for main stack. next_thread_stack_base = stack_base - (8 * 1024 * 1024); //Initialize these to 0s fillStart = 0; spillStart = 0; } void SparcLiveProcess::handleTrap(int trapNum, ThreadContext *tc) { switch(trapNum) { case 0x03: //Flush window trap warn("Ignoring request to flush register windows.\n"); break; default: panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum); } } void Sparc32LiveProcess::startup() { argsInit(32 / 8, VMPageSize); //From the SPARC ABI //The process runs in user mode with 32 bit addresses threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x0a); //Setup default FP state threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0); threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0); // /* * Register window management registers */ //No windows contain info from other programs //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0); //There are no windows to pop //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0); //All windows are available to save into //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2); threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2); //All windows are "clean" //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows); threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows); //Start with register window 0 threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0); //Always use spill and fill traps 0 //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0); //Set the trap level to 0 threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0); //Set the ASI register to something fixed threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY); } void Sparc64LiveProcess::startup() { argsInit(sizeof(IntReg), VMPageSize); //From the SPARC ABI //The process runs in user mode threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x02); //Setup default FP state threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0); threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0); // /* * Register window management registers */ //No windows contain info from other programs //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0); //There are no windows to pop //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0); //All windows are available to save into //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2); threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2); //All windows are "clean" //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows); threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows); //Start with register window 0 threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0); //Always use spill and fill traps 0 //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0); threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0); //Set the trap level to 0 threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0); //Set the ASI register to something fixed threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY); } M5_32_auxv_t::M5_32_auxv_t(int32_t type, int32_t val) { a_type = TheISA::htog(type); a_val = TheISA::htog(val); } M5_64_auxv_t::M5_64_auxv_t(int64_t type, int64_t val) { a_type = TheISA::htog(type); a_val = TheISA::htog(val); } void Sparc64LiveProcess::argsInit(int intSize, int pageSize) { typedef M5_64_auxv_t auxv_t; Process::startup(); string filename; if(argv.size() < 1) filename = ""; else filename = argv[0]; Addr alignmentMask = ~(intSize - 1); // load object file into target memory objFile->loadSections(initVirtMem); //These are the auxilliary vector types enum auxTypes { SPARC_AT_HWCAP = 16, SPARC_AT_PAGESZ = 6, SPARC_AT_CLKTCK = 17, SPARC_AT_PHDR = 3, SPARC_AT_PHENT = 4, SPARC_AT_PHNUM = 5, SPARC_AT_BASE = 7, SPARC_AT_FLAGS = 8, SPARC_AT_ENTRY = 9, SPARC_AT_UID = 11, SPARC_AT_EUID = 12, SPARC_AT_GID = 13, SPARC_AT_EGID = 14, SPARC_AT_SECURE = 23 }; enum hardwareCaps { M5_HWCAP_SPARC_FLUSH = 1, M5_HWCAP_SPARC_STBAR = 2, M5_HWCAP_SPARC_SWAP = 4, M5_HWCAP_SPARC_MULDIV = 8, M5_HWCAP_SPARC_V9 = 16, //This one should technically only be set //if there is a cheetah or cheetah_plus tlb, //but we'll use it all the time M5_HWCAP_SPARC_ULTRA3 = 32 }; const int64_t hwcap = M5_HWCAP_SPARC_FLUSH | M5_HWCAP_SPARC_STBAR | M5_HWCAP_SPARC_SWAP | M5_HWCAP_SPARC_MULDIV | M5_HWCAP_SPARC_V9 | M5_HWCAP_SPARC_ULTRA3; //Setup the auxilliary vectors. These will already have endian conversion. //Auxilliary vectors are loaded only for elf formatted executables. ElfObject * elfObject = dynamic_cast(objFile); if(elfObject) { //Bits which describe the system hardware capabilities auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap)); //The system page size auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize)); //Defined to be 100 in the kernel source. //Frequency at which times() increments auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100)); // For statically linked executables, this is the virtual address of the // program header tables if they appear in the executable image auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable())); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount())); //This is the address of the elf "interpreter", It should be set //to 0 for regular executables. It should be something else //(not sure what) for dynamic libraries. auxv.push_back(auxv_t(SPARC_AT_BASE, 0)); //This is hardwired to 0 in the elf loading code in the kernel auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0)); //The entry point to the program auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint())); //Different user and group IDs auxv.push_back(auxv_t(SPARC_AT_UID, uid())); auxv.push_back(auxv_t(SPARC_AT_EUID, euid())); auxv.push_back(auxv_t(SPARC_AT_GID, gid())); auxv.push_back(auxv_t(SPARC_AT_EGID, egid())); //Whether to enable "secure mode" in the executable auxv.push_back(auxv_t(SPARC_AT_SECURE, 0)); } //Figure out how big the initial stack needs to be // The unaccounted for 0 at the top of the stack int mysterious_size = intSize; //This is the name of the file which is present on the initial stack //It's purpose is to let the user space linker examine the original file. int file_name_size = filename.size() + 1; int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } //The info_block needs to be padded so it's size is a multiple of the //alignment mask. Also, it appears that there needs to be at least some //padding, so if the size is already a multiple, we need to increase it //anyway. int info_block_size = (file_name_size + env_data_size + arg_data_size + intSize) & alignmentMask; int info_block_padding = info_block_size - file_name_size - env_data_size - arg_data_size; //Each auxilliary vector is two 8 byte words int aux_array_size = intSize * 2 * (auxv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int argc_size = intSize; int window_save_size = intSize * 16; int space_needed = mysterious_size + info_block_size + aux_array_size + envp_array_size + argv_array_size + argc_size + window_save_size; stack_min = stack_base - space_needed; stack_min &= alignmentMask; stack_size = stack_base - stack_min; // map memory pTable->allocate(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize)); // map out initial stack contents Addr mysterious_base = stack_base - mysterious_size; Addr file_name_base = mysterious_base - file_name_size; Addr env_data_base = file_name_base - env_data_size; Addr arg_data_base = env_data_base - arg_data_size; Addr auxv_array_base = arg_data_base - aux_array_size - info_block_padding; Addr envp_array_base = auxv_array_base - envp_array_size; Addr argv_array_base = envp_array_base - argv_array_size; Addr argc_base = argv_array_base - argc_size; #ifndef NDEBUG // only used in DPRINTF Addr window_save_base = argc_base - window_save_size; #endif DPRINTF(Sparc, "The addresses of items on the initial stack:\n"); DPRINTF(Sparc, "0x%x - file name\n", file_name_base); DPRINTF(Sparc, "0x%x - env data\n", env_data_base); DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base); DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base); DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base); DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base); DPRINTF(Sparc, "0x%x - argc \n", argc_base); DPRINTF(Sparc, "0x%x - window save\n", window_save_base); DPRINTF(Sparc, "0x%x - stack min\n", stack_min); // write contents to stack // figure out argc uint64_t argc = argv.size(); uint64_t guestArgc = TheISA::htog(argc); //Write out the mysterious 0 uint64_t mysterious_zero = 0; initVirtMem->writeBlob(mysterious_base, (uint8_t*)&mysterious_zero, mysterious_size); //Write the file name initVirtMem->writeString(file_name_base, filename.c_str()); //Copy the aux stuff for(int x = 0; x < auxv.size(); x++) { initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].a_type), intSize); initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].a_val), intSize); } //Write out the terminating zeroed auxilliary vector const uint64_t zero = 0; initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(), (uint8_t*)&zero, 2 * intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); //Stuff the trap handlers into the processes address space. //Since the stack grows down and is the highest area in the processes //address space, we can put stuff above it and stay out of the way. int fillSize = sizeof(MachInst) * numFillInsts; int spillSize = sizeof(MachInst) * numSpillInsts; fillStart = stack_base; spillStart = fillStart + fillSize; initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler64, fillSize); initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler64, spillSize); //Set up the thread context to start running the process threadContexts[0]->setIntReg(ArgumentReg0, argc); threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base); threadContexts[0]->setIntReg(StackPointerReg, stack_min - StackBias); Addr prog_entry = objFile->entryPoint(); threadContexts[0]->setPC(prog_entry); threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst)); threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst))); //Align the "stack_min" to a page boundary. stack_min = roundDown(stack_min, pageSize); // num_processes++; } void Sparc32LiveProcess::argsInit(int intSize, int pageSize) { typedef M5_32_auxv_t auxv_t; Process::startup(); string filename; if(argv.size() < 1) filename = ""; else filename = argv[0]; //Even though this is a 32 bit process, the ABI says we still need to //maintain double word alignment of the stack pointer. Addr alignmentMask = ~(8 - 1); // load object file into target memory objFile->loadSections(initVirtMem); //These are the auxilliary vector types enum auxTypes { SPARC_AT_HWCAP = 16, SPARC_AT_PAGESZ = 6, SPARC_AT_CLKTCK = 17, SPARC_AT_PHDR = 3, SPARC_AT_PHENT = 4, SPARC_AT_PHNUM = 5, SPARC_AT_BASE = 7, SPARC_AT_FLAGS = 8, SPARC_AT_ENTRY = 9, SPARC_AT_UID = 11, SPARC_AT_EUID = 12, SPARC_AT_GID = 13, SPARC_AT_EGID = 14, SPARC_AT_SECURE = 23 }; enum hardwareCaps { M5_HWCAP_SPARC_FLUSH = 1, M5_HWCAP_SPARC_STBAR = 2, M5_HWCAP_SPARC_SWAP = 4, M5_HWCAP_SPARC_MULDIV = 8, M5_HWCAP_SPARC_V9 = 16, //This one should technically only be set //if there is a cheetah or cheetah_plus tlb, //but we'll use it all the time M5_HWCAP_SPARC_ULTRA3 = 32 }; const int64_t hwcap = M5_HWCAP_SPARC_FLUSH | M5_HWCAP_SPARC_STBAR | M5_HWCAP_SPARC_SWAP | M5_HWCAP_SPARC_MULDIV | M5_HWCAP_SPARC_V9 | M5_HWCAP_SPARC_ULTRA3; //Setup the auxilliary vectors. These will already have endian conversion. //Auxilliary vectors are loaded only for elf formatted executables. ElfObject * elfObject = dynamic_cast(objFile); if(elfObject) { //Bits which describe the system hardware capabilities auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap)); //The system page size auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize)); //Defined to be 100 in the kernel source. //Frequency at which times() increments auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100)); // For statically linked executables, this is the virtual address of the // program header tables if they appear in the executable image auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable())); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount())); //This is the address of the elf "interpreter", It should be set //to 0 for regular executables. It should be something else //(not sure what) for dynamic libraries. auxv.push_back(auxv_t(SPARC_AT_BASE, 0)); //This is hardwired to 0 in the elf loading code in the kernel auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0)); //The entry point to the program auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint())); //Different user and group IDs auxv.push_back(auxv_t(SPARC_AT_UID, uid())); auxv.push_back(auxv_t(SPARC_AT_EUID, euid())); auxv.push_back(auxv_t(SPARC_AT_GID, gid())); auxv.push_back(auxv_t(SPARC_AT_EGID, egid())); //Whether to enable "secure mode" in the executable auxv.push_back(auxv_t(SPARC_AT_SECURE, 0)); } //Figure out how big the initial stack needs to be // The unaccounted for 8 byte 0 at the top of the stack int mysterious_size = 8; //This is the name of the file which is present on the initial stack //It's purpose is to let the user space linker examine the original file. int file_name_size = filename.size() + 1; int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } //The info_block - This seems to need an pad for some reason. int info_block_size = (mysterious_size + file_name_size + env_data_size + arg_data_size + intSize); //Each auxilliary vector is two 4 byte words int aux_array_size = intSize * 2 * (auxv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int argc_size = intSize; int window_save_size = intSize * 16; int space_needed = info_block_size + aux_array_size + envp_array_size + argv_array_size + argc_size + window_save_size; stack_min = stack_base - space_needed; stack_min &= alignmentMask; stack_size = stack_base - stack_min; // map memory pTable->allocate(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize)); // map out initial stack contents uint32_t window_save_base = stack_min; uint32_t argc_base = window_save_base + window_save_size; uint32_t argv_array_base = argc_base + argc_size; uint32_t envp_array_base = argv_array_base + argv_array_size; uint32_t auxv_array_base = envp_array_base + envp_array_size; //The info block is pushed up against the top of the stack, while //the rest of the initial stack frame is aligned to an 8 byte boudary. uint32_t arg_data_base = stack_base - info_block_size + intSize; uint32_t env_data_base = arg_data_base + arg_data_size; uint32_t file_name_base = env_data_base + env_data_size; uint32_t mysterious_base = file_name_base + file_name_size; DPRINTF(Sparc, "The addresses of items on the initial stack:\n"); DPRINTF(Sparc, "0x%x - file name\n", file_name_base); DPRINTF(Sparc, "0x%x - env data\n", env_data_base); DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base); DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base); DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base); DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base); DPRINTF(Sparc, "0x%x - argc \n", argc_base); DPRINTF(Sparc, "0x%x - window save\n", window_save_base); DPRINTF(Sparc, "0x%x - stack min\n", stack_min); // write contents to stack // figure out argc uint32_t argc = argv.size(); uint32_t guestArgc = TheISA::htog(argc); //Write out the mysterious 0 uint64_t mysterious_zero = 0; initVirtMem->writeBlob(mysterious_base, (uint8_t*)&mysterious_zero, mysterious_size); //Write the file name initVirtMem->writeString(file_name_base, filename.c_str()); //Copy the aux stuff for(int x = 0; x < auxv.size(); x++) { initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].a_type), intSize); initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].a_val), intSize); } //Write out the terminating zeroed auxilliary vector const uint64_t zero = 0; initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(), (uint8_t*)&zero, 2 * intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); //Stuff the trap handlers into the processes address space. //Since the stack grows down and is the highest area in the processes //address space, we can put stuff above it and stay out of the way. int fillSize = sizeof(MachInst) * numFillInsts; int spillSize = sizeof(MachInst) * numSpillInsts; fillStart = stack_base; spillStart = fillStart + fillSize; initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler32, fillSize); initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler32, spillSize); //Set up the thread context to start running the process //threadContexts[0]->setIntReg(ArgumentReg0, argc); //threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base); threadContexts[0]->setIntReg(StackPointerReg, stack_min); uint32_t prog_entry = objFile->entryPoint(); threadContexts[0]->setPC(prog_entry); threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst)); threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst))); //Align the "stack_min" to a page boundary. stack_min = roundDown(stack_min, pageSize); // num_processes++; }