// -*- mode:c++ -*- // Copyright (c) 2010 ARM Limited // All rights reserved // // The license below extends only to copyright in the software and shall // not be construed as granting a license to any other intellectual // property including but not limited to intellectual property relating // to a hardware implementation of the functionality of the software // licensed hereunder. You may use the software subject to the license // terms below provided that you ensure that this notice is replicated // unmodified and in its entirety in all distributions of the software, // modified or unmodified, in source code or in binary form. // // Copyright (c) 2007-2008 The Florida State University // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Stephen Hines //////////////////////////////////////////////////////////////////// // // Floating Point operate instructions // def template FPAExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; if (%(predicate_test)s) { %(code)s; if (fault == NoFault) { %(op_wb)s; } } return fault; } }}; def template FloatDoubleDecode {{ { ArmStaticInst *i = NULL; switch (OPCODE_19 << 1 | OPCODE_7) { case 0: i = (ArmStaticInst *)new %(class_name)sS(machInst); break; case 1: i = (ArmStaticInst *)new %(class_name)sD(machInst); break; case 2: case 3: default: panic("Cannot decode float/double nature of the instruction"); } return i; } }}; // Primary format for float point operate instructions: def format FloatOp(code, *flags) {{ orig_code = code cblk = code iop = InstObjParams(name, Name, 'PredOp', {"code": cblk, "predicate_test": predicateTest}, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = FPAExecute.subst(iop) sng_cblk = code sng_iop = InstObjParams(name, Name+'S', 'PredOp', {"code": sng_cblk, "predicate_test": predicateTest}, flags) header_output += BasicDeclare.subst(sng_iop) decoder_output += BasicConstructor.subst(sng_iop) exec_output += FPAExecute.subst(sng_iop) dbl_code = re.sub(r'\.sf', '.df', orig_code) dbl_cblk = dbl_code dbl_iop = InstObjParams(name, Name+'D', 'PredOp', {"code": dbl_cblk, "predicate_test": predicateTest}, flags) header_output += BasicDeclare.subst(dbl_iop) decoder_output += BasicConstructor.subst(dbl_iop) exec_output += FPAExecute.subst(dbl_iop) decode_block = FloatDoubleDecode.subst(iop) }}; let {{ calcFPCcCode = ''' uint16_t _in, _iz, _ic, _iv; _in = %(fReg1)s < %(fReg2)s; _iz = %(fReg1)s == %(fReg2)s; _ic = %(fReg1)s >= %(fReg2)s; _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1; CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 | (CondCodes & 0x0FFFFFFF); ''' }}; def format FloatCmp(fReg1, fReg2, *flags) {{ code = calcFPCcCode % vars() iop = InstObjParams(name, Name, 'PredOp', {"code": code, "predicate_test": predicateTest}, flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = FPAExecute.subst(iop) }}; let {{ header_output = ''' StaticInstPtr decodeExtensionRegLoadStore(ExtMachInst machInst); ''' decoder_output = ''' StaticInstPtr decodeExtensionRegLoadStore(ExtMachInst machInst) { const uint32_t opcode = bits(machInst, 24, 20); const uint32_t offset = bits(machInst, 7, 0); const bool single = (bits(machInst, 8) == 0); const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16); RegIndex vd; if (single) { vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) | bits(machInst, 22)); } else { vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) | (bits(machInst, 22) << 5)); } switch (bits(opcode, 4, 3)) { case 0x0: if (bits(opcode, 4, 1) == 0x2 && !(machInst.thumb == 1 && bits(machInst, 28) == 1) && !(machInst.thumb == 0 && machInst.condCode == 0xf)) { if ((bits(machInst, 7, 4) & 0xd) != 1) { break; } const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); const IntRegIndex rt2 = (IntRegIndex)(uint32_t)bits(machInst, 19, 16); const bool op = bits(machInst, 20); uint32_t vm; if (single) { vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5); } else { vm = (bits(machInst, 3, 0) << 1) | (bits(machInst, 5) << 5); } if (op) { return new Vmov2Core2Reg(machInst, rt, rt2, (IntRegIndex)vm); } else { return new Vmov2Reg2Core(machInst, (IntRegIndex)vm, rt, rt2); } } break; case 0x1: switch (bits(opcode, 1, 0)) { case 0x0: return new VLdmStm(machInst, rn, vd, single, true, false, false, offset); case 0x1: return new VLdmStm(machInst, rn, vd, single, true, false, true, offset); case 0x2: return new VLdmStm(machInst, rn, vd, single, true, true, false, offset); case 0x3: // If rn == sp, then this is called vpop. return new VLdmStm(machInst, rn, vd, single, true, true, true, offset); } case 0x2: if (bits(opcode, 1, 0) == 0x2) { // If rn == sp, then this is called vpush. return new VLdmStm(machInst, rn, vd, single, false, true, false, offset); } else if (bits(opcode, 1, 0) == 0x3) { return new VLdmStm(machInst, rn, vd, single, false, true, true, offset); } // Fall through on purpose case 0x3: const bool up = (bits(machInst, 23) == 1); const uint32_t imm = bits(machInst, 7, 0) << 2; RegIndex vd; if (single) { vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) | (bits(machInst, 22))); } else { vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) | (bits(machInst, 22) << 5)); } if (bits(opcode, 1, 0) == 0x0) { if (single) { if (up) { return new %(vstr_us)s(machInst, vd, rn, up, imm); } else { return new %(vstr_s)s(machInst, vd, rn, up, imm); } } else { if (up) { return new %(vstr_ud)s(machInst, vd, vd + 1, rn, up, imm); } else { return new %(vstr_d)s(machInst, vd, vd + 1, rn, up, imm); } } } else if (bits(opcode, 1, 0) == 0x1) { if (single) { if (up) { return new %(vldr_us)s(machInst, vd, rn, up, imm); } else { return new %(vldr_s)s(machInst, vd, rn, up, imm); } } else { if (up) { return new %(vldr_ud)s(machInst, vd, vd + 1, rn, up, imm); } else { return new %(vldr_d)s(machInst, vd, vd + 1, rn, up, imm); } } } } return new Unknown(machInst); } ''' % { "vldr_us" : "VLDR_" + loadImmClassName(False, True, False), "vldr_s" : "VLDR_" + loadImmClassName(False, False, False), "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False), "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False), "vstr_us" : "VSTR_" + storeImmClassName(False, True, False), "vstr_s" : "VSTR_" + storeImmClassName(False, False, False), "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False), "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False) } }}; def format ExtensionRegLoadStore() {{ decode_block = ''' return decodeExtensionRegLoadStore(machInst); ''' }}; let {{ header_output = ''' StaticInstPtr decodeShortFpTransfer(ExtMachInst machInst); ''' decoder_output = ''' StaticInstPtr decodeShortFpTransfer(ExtMachInst machInst) { const uint32_t l = bits(machInst, 20); const uint32_t c = bits(machInst, 8); const uint32_t a = bits(machInst, 23, 21); const uint32_t b = bits(machInst, 6, 5); if ((machInst.thumb == 1 && bits(machInst, 28) == 1) || (machInst.thumb == 0 && machInst.condCode == 0xf)) { return new Unknown(machInst); } if (l == 0 && c == 0) { if (a == 0) { const uint32_t vn = (bits(machInst, 19, 16) << 1) | bits(machInst, 7); const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); if (bits(machInst, 20) == 1) { return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn); } else { return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt); } } else if (a == 0x7) { const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); uint32_t specReg = bits(machInst, 19, 16); switch (specReg) { case 0: specReg = MISCREG_FPSID; break; case 1: specReg = MISCREG_FPSCR; break; case 8: specReg = MISCREG_FPEXC; break; default: return new Unknown(machInst); } return new Vmsr(machInst, (IntRegIndex)specReg, rt); } } else if (l == 0 && c == 1) { if (bits(a, 2) == 0) { uint32_t vd = (bits(machInst, 7) << 5) | (bits(machInst, 19, 16) << 1); uint32_t index, size; const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); if (bits(machInst, 22) == 1) { size = 8; index = (bits(machInst, 21) << 2) | bits(machInst, 6, 5); } else if (bits(machInst, 5) == 1) { size = 16; index = (bits(machInst, 21) << 1) | bits(machInst, 6); } else if (bits(machInst, 6) == 0) { size = 32; index = bits(machInst, 21); } else { return new Unknown(machInst); } if (index >= (32 / size)) { index -= (32 / size); vd++; } switch (size) { case 8: return new VmovCoreRegB(machInst, (IntRegIndex)vd, rt, index); case 16: return new VmovCoreRegH(machInst, (IntRegIndex)vd, rt, index); case 32: return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt); } } else if (bits(b, 1) == 0) { // A8-594 return new WarnUnimplemented("vdup", machInst); } } else if (l == 1 && c == 0) { if (a == 0) { const uint32_t vn = (bits(machInst, 19, 16) << 1) | bits(machInst, 7); const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); if (bits(machInst, 20) == 1) { return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn); } else { return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt); } } else if (a == 7) { const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); uint32_t specReg = bits(machInst, 19, 16); switch (specReg) { case 0: specReg = MISCREG_FPSID; break; case 1: specReg = MISCREG_FPSCR; break; case 6: specReg = MISCREG_MVFR1; break; case 7: specReg = MISCREG_MVFR0; break; case 8: specReg = MISCREG_FPEXC; break; default: return new Unknown(machInst); } return new Vmrs(machInst, rt, (IntRegIndex)specReg); } } else { uint32_t vd = (bits(machInst, 7) << 5) | (bits(machInst, 19, 16) << 1); uint32_t index, size; const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12); const bool u = (bits(machInst, 23) == 1); if (bits(machInst, 22) == 1) { size = 8; index = (bits(machInst, 21) << 2) | bits(machInst, 6, 5); } else if (bits(machInst, 5) == 1) { size = 16; index = (bits(machInst, 21) << 1) | bits(machInst, 6); } else if (bits(machInst, 6) == 0 && !u) { size = 32; index = bits(machInst, 21); } else { return new Unknown(machInst); } if (index >= (32 / size)) { index -= (32 / size); vd++; } switch (size) { case 8: if (u) { return new VmovRegCoreUB(machInst, rt, (IntRegIndex)vd, index); } else { return new VmovRegCoreSB(machInst, rt, (IntRegIndex)vd, index); } case 16: if (u) { return new VmovRegCoreUH(machInst, rt, (IntRegIndex)vd, index); } else { return new VmovRegCoreSH(machInst, rt, (IntRegIndex)vd, index); } case 32: return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd); } } return new Unknown(machInst); } ''' }}; def format ShortFpTransfer() {{ decode_block = ''' return decodeShortFpTransfer(machInst); ''' }}; let {{ header_output = ''' StaticInstPtr decodeVfpData(ExtMachInst machInst); ''' decoder_output = ''' StaticInstPtr decodeVfpData(ExtMachInst machInst) { const uint32_t opc1 = bits(machInst, 23, 20); const uint32_t opc2 = bits(machInst, 19, 16); const uint32_t opc3 = bits(machInst, 7, 6); //const uint32_t opc4 = bits(machInst, 3, 0); switch (opc1 & 0xb /* 1011 */) { case 0x0: return new WarnUnimplemented("vmla, vmls", machInst); case 0x2: if ((opc3 & 0x1) == 0) { uint32_t vd; uint32_t vm; uint32_t vn; if (bits(machInst, 8) == 0) { vd = bits(machInst, 22) | (bits(machInst, 15, 12) << 1); vm = bits(machInst, 5) | (bits(machInst, 3, 0) << 1); vn = bits(machInst, 7) | (bits(machInst, 19, 16) << 1); return new VmulS(machInst, (IntRegIndex)vd, (IntRegIndex)vn, (IntRegIndex)vm); } else { vd = (bits(machInst, 22) << 5) | (bits(machInst, 15, 12) << 1); vm = (bits(machInst, 5) << 5) | (bits(machInst, 3, 0) << 1); vn = (bits(machInst, 7) << 5) | (bits(machInst, 19, 16) << 1); return new VmulD(machInst, (IntRegIndex)vd, (IntRegIndex)vn, (IntRegIndex)vm); } } case 0x1: return new WarnUnimplemented("vnmla, vnmls, vnmul", machInst); case 0x3: if ((opc3 & 0x1) == 0) { return new WarnUnimplemented("vadd", machInst); } else { return new WarnUnimplemented("vsub", machInst); } case 0x8: if ((opc3 & 0x1) == 0) { return new WarnUnimplemented("vdiv", machInst); } break; case 0xb: if ((opc3 & 0x1) == 0) { uint32_t vd; const uint32_t baseImm = bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4); if (bits(machInst, 8) == 0) { vd = bits(machInst, 22) | (bits(machInst, 15, 12) << 1); uint32_t imm = vfp_modified_imm(baseImm, false); return new VmovImmS(machInst, (IntRegIndex)vd, imm); } else { vd = (bits(machInst, 22) << 5) | (bits(machInst, 15, 12) << 1); uint64_t imm = vfp_modified_imm(baseImm, true); return new VmovImmD(machInst, (IntRegIndex)vd, imm); } } switch (opc2) { case 0x0: if (opc3 == 1) { uint32_t vd; uint32_t vm; if (bits(machInst, 8) == 0) { vd = bits(machInst, 22) | (bits(machInst, 15, 12) << 1); vm = bits(machInst, 5) | (bits(machInst, 3, 0) << 1); return new VmovRegS(machInst, (IntRegIndex)vd, (IntRegIndex)vm); } else { vd = (bits(machInst, 22) << 5) | (bits(machInst, 15, 12) << 1); vm = (bits(machInst, 5) << 5) | (bits(machInst, 3, 0) << 1); return new VmovRegD(machInst, (IntRegIndex)vd, (IntRegIndex)vm); } } else { return new WarnUnimplemented("vabs", machInst); } case 0x1: if (opc3 == 1) { uint32_t vd; uint32_t vm; if (bits(machInst, 8) == 0) { vd = bits(machInst, 22) | (bits(machInst, 15, 12) << 1); vm = bits(machInst, 5) | (bits(machInst, 3, 0) << 1); return new VnegS(machInst, (IntRegIndex)vd, (IntRegIndex)vm); } else { vd = (bits(machInst, 22) << 5) | (bits(machInst, 15, 12) << 1); vm = (bits(machInst, 5) << 5) | (bits(machInst, 3, 0) << 1); return new VnegD(machInst, (IntRegIndex)vd, (IntRegIndex)vm); } } else { return new WarnUnimplemented("vsqrt", machInst); } case 0x2: case 0x3: // Between half and single precision. return new WarnUnimplemented("vcvtb, vcvtt", machInst); case 0x4: case 0x5: return new WarnUnimplemented("vcmp, vcmpe", machInst); case 0x7: if (opc3 == 0x3) { // Between double and single precision. return new WarnUnimplemented("vcvt", machInst); } break; case 0x8: // Between FP and int. return new WarnUnimplemented("vcvt, vcvtr", machInst); case 0xa: case 0xb: // Between FP and fixed point. return new WarnUnimplemented("vcvt", machInst); case 0xc: case 0xd: // Between FP and int. return new WarnUnimplemented("vcvt, vcvtr", machInst); case 0xe: case 0xf: // Between FP and fixed point. return new WarnUnimplemented("vcvt", machInst); } break; } return new Unknown(machInst); } ''' }}; def format VfpData() {{ decode_block = ''' return decodeVfpData(machInst); ''' }};