/* * Copyright (c) 2003-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi */ #include "arch/sparc/isa_traits.hh" #include "arch/sparc/process.hh" #include "arch/sparc/linux/process.hh" #include "arch/sparc/solaris/process.hh" #include "base/loader/object_file.hh" #include "base/misc.hh" #include "cpu/exec_context.hh" #include "mem/page_table.hh" #include "mem/translating_port.hh" #include "sim/builder.hh" #include "sim/system.hh" using namespace std; using namespace SparcISA; SparcLiveProcess * SparcLiveProcess::create(const std::string &nm, System *system, int stdin_fd, int stdout_fd, int stderr_fd, std::string executable, std::vector &argv, std::vector &envp) { SparcLiveProcess *process = NULL; ObjectFile *objFile = createObjectFile(executable); if (objFile == NULL) { fatal("Can't load object file %s", executable); } if (objFile->getArch() != ObjectFile::SPARC) fatal("Object file with arch %x does not match architecture %x.", objFile->getArch(), ObjectFile::SPARC); switch (objFile->getOpSys()) { case ObjectFile::Linux: process = new SparcLinuxProcess(nm, objFile, system, stdin_fd, stdout_fd, stderr_fd, argv, envp); break; case ObjectFile::Solaris: process = new SparcSolarisProcess(nm, objFile, system, stdin_fd, stdout_fd, stderr_fd, argv, envp); break; default: fatal("Unknown/unsupported operating system."); } if (process == NULL) fatal("Unknown error creating process object."); return process; } SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile, System *_system, int stdin_fd, int stdout_fd, int stderr_fd, std::vector &argv, std::vector &envp) : LiveProcess(nm, objFile, _system, stdin_fd, stdout_fd, stderr_fd, argv, envp) { // XXX all the below need to be updated for SPARC - Ali brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize(); brk_point = roundUp(brk_point, VMPageSize); // Set up stack. On SPARC Linux, stack goes from the top of memory // downward, less the hole for the kernel address space. stack_base = ((Addr)0x80000000000ULL); // Set up region for mmaps. Tru64 seems to start just above 0 and // grow up from there. mmap_start = mmap_end = 0x800000; // Set pointer for next thread stack. Reserve 8M for main stack. next_thread_stack_base = stack_base - (8 * 1024 * 1024); } void SparcLiveProcess::startup() { argsInit(MachineBytes, VMPageSize); //From the SPARC ABI //The process runs in user mode execContexts[0]->setMiscRegWithEffect(MISCREG_PSTATE, 0x02); //Setup default FP state execContexts[0]->setMiscReg(MISCREG_FSR, 0); execContexts[0]->setMiscReg(MISCREG_TICK, 0); // /* * Register window management registers */ //No windows contain info from other programs execContexts[0]->setMiscRegWithEffect(MISCREG_OTHERWIN, 0); //There are no windows to pop execContexts[0]->setMiscRegWithEffect(MISCREG_CANRESTORE, 0); //All windows are available to save into execContexts[0]->setMiscRegWithEffect(MISCREG_CANSAVE, NWindows - 2); //All windows are "clean" execContexts[0]->setMiscRegWithEffect(MISCREG_CLEANWIN, NWindows); //Start with register window 0 execContexts[0]->setMiscRegWithEffect(MISCREG_CWP, 0); } m5_auxv_t buildAuxVect(int64_t type, int64_t val) { m5_auxv_t result; result.a_type = TheISA::htog(type); result.a_val = TheISA::htog(val); return result; } void SparcLiveProcess::argsInit(int intSize, int pageSize) { Process::startup(); Addr alignmentMask = ~(intSize - 1); // load object file into target memory objFile->loadSections(initVirtMem); //These are the auxilliary vector types enum auxTypes { SPARC_AT_HWCAP = 16, SPARC_AT_PAGESZ = 6, SPARC_AT_CLKTCK = 17, SPARC_AT_PHDR = 3, SPARC_AT_PHENT = 4, SPARC_AT_PHNUM = 5, SPARC_AT_BASE = 7, SPARC_AT_FLAGS = 8, SPARC_AT_ENTRY = 9, SPARC_AT_UID = 11, SPARC_AT_EUID = 12, SPARC_AT_GID = 13, SPARC_AT_EGID = 14 }; enum hardwareCaps { M5_HWCAP_SPARC_FLUSH = 1, M5_HWCAP_SPARC_STBAR = 2, M5_HWCAP_SPARC_SWAP = 4, M5_HWCAP_SPARC_MULDIV = 8, M5_HWCAP_SPARC_V9 = 16, //This one should technically only be set //if there is a cheetah or cheetah_plus tlb, //but we'll use it all the time M5_HWCAP_SPARC_ULTRA3 = 32 }; const int64_t hwcap = M5_HWCAP_SPARC_FLUSH | M5_HWCAP_SPARC_STBAR | M5_HWCAP_SPARC_SWAP | M5_HWCAP_SPARC_MULDIV | M5_HWCAP_SPARC_V9 | M5_HWCAP_SPARC_ULTRA3; //Setup the auxilliary vectors. These will already have //endian conversion. auxv.push_back(buildAuxVect(SPARC_AT_EGID, 100)); auxv.push_back(buildAuxVect(SPARC_AT_GID, 100)); auxv.push_back(buildAuxVect(SPARC_AT_EUID, 100)); auxv.push_back(buildAuxVect(SPARC_AT_UID, 100)); //This would work, but the entry point is a protected member //auxv.push_back(buildAuxVect(SPARC_AT_ENTRY, objFile->entry)); auxv.push_back(buildAuxVect(SPARC_AT_FLAGS, 0)); //This is the address of the elf "interpreter", which I don't //think we currently set up. It should be set to 0 (I think) //auxv.push_back(buildAuxVect(SPARC_AT_BASE, 0)); //This is the number of headers which were in the original elf //file. This information isn't avaibale by this point. //auxv.push_back(buildAuxVect(SPARC_AT_PHNUM, 3)); //This is the size of a program header entry. This isn't easy //to compute here. //auxv.push_back(buildAuxVect(SPARC_AT_PHENT, blah)); //This is should be set to load_addr (whatever that is) + //e_phoff. I think it's a pointer to the program headers. //auxv.push_back(buildAuxVect(SPARC_AT_PHDR, blah)); //This should be easy to get right, but I won't set it for now //auxv.push_back(buildAuxVect(SPARC_AT_CLKTCK, blah)); auxv.push_back(buildAuxVect(SPARC_AT_PAGESZ, SparcISA::VMPageSize)); auxv.push_back(buildAuxVect(SPARC_AT_HWCAP, hwcap)); //Figure out how big the initial stack needs to be //Each auxilliary vector is two 8 byte words int aux_data_size = 2 * intSize * auxv.size(); int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int aux_array_size = intSize * 2 * (auxv.size() + 1); int argv_array_size = intSize * (argv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int argc_size = intSize; int window_save_size = intSize * 16; int info_block_size = (aux_data_size + env_data_size + arg_data_size + ~alignmentMask) & alignmentMask; int info_block_padding = info_block_size - aux_data_size - env_data_size - arg_data_size; int space_needed = info_block_size + aux_array_size + envp_array_size + argv_array_size + argc_size + window_save_size; stack_min = stack_base - space_needed; stack_min &= alignmentMask; stack_size = stack_base - stack_min; // map memory pTable->allocate(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize)); // map out initial stack contents Addr aux_data_base = stack_base - aux_data_size - info_block_padding; Addr env_data_base = aux_data_base - env_data_size; Addr arg_data_base = env_data_base - arg_data_size; Addr auxv_array_base = arg_data_base - aux_array_size; Addr envp_array_base = auxv_array_base - envp_array_size; Addr argv_array_base = envp_array_base - argv_array_size; Addr argc_base = argv_array_base - argc_size; Addr window_save_base = argc_base - window_save_size; DPRINTF(Sparc, "The addresses of items on the initial stack:\n"); DPRINTF(Sparc, "0x%x - aux data\n", aux_data_base); DPRINTF(Sparc, "0x%x - env data\n", env_data_base); DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base); DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base); DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base); DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base); DPRINTF(Sparc, "0x%x - argc \n", argc_base); DPRINTF(Sparc, "0x%x - window save\n", window_save_base); DPRINTF(Sparc, "0x%x - stack min\n", stack_min); // write contents to stack uint64_t argc = argv.size(); uint64_t guestArgc = TheISA::htog(argc); //Copy the aux stuff for(int x = 0; x < auxv.size(); x++) { initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].a_type), intSize); initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].a_val), intSize); } //Write out the terminating zeroed auxilliary vector const uint64_t zero = 0; initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(), (uint8_t*)&zero, 2 * intSize); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); execContexts[0]->setIntReg(ArgumentReg0, argc); execContexts[0]->setIntReg(ArgumentReg1, argv_array_base); execContexts[0]->setIntReg(StackPointerReg, stack_min - StackBias); Addr prog_entry = objFile->entryPoint(); execContexts[0]->setPC(prog_entry); execContexts[0]->setNextPC(prog_entry + sizeof(MachInst)); execContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst))); // num_processes++; } BEGIN_DECLARE_SIM_OBJECT_PARAMS(SparcLiveProcess) VectorParam cmd; Param executable; Param input; Param output; VectorParam env; SimObjectParam system; END_DECLARE_SIM_OBJECT_PARAMS(SparcLiveProcess) BEGIN_INIT_SIM_OBJECT_PARAMS(SparcLiveProcess) INIT_PARAM(cmd, "command line (executable plus arguments)"), INIT_PARAM(executable, "executable (overrides cmd[0] if set)"), INIT_PARAM(input, "filename for stdin (dflt: use sim stdin)"), INIT_PARAM(output, "filename for stdout/stderr (dflt: use sim stdout)"), INIT_PARAM(env, "environment settings"), INIT_PARAM(system, "system") END_INIT_SIM_OBJECT_PARAMS(SparcLiveProcess) CREATE_SIM_OBJECT(SparcLiveProcess) { string in = input; string out = output; // initialize file descriptors to default: same as simulator int stdin_fd, stdout_fd, stderr_fd; if (in == "stdin" || in == "cin") stdin_fd = STDIN_FILENO; else stdin_fd = Process::openInputFile(input); if (out == "stdout" || out == "cout") stdout_fd = STDOUT_FILENO; else if (out == "stderr" || out == "cerr") stdout_fd = STDERR_FILENO; else stdout_fd = Process::openOutputFile(out); stderr_fd = (stdout_fd != STDOUT_FILENO) ? stdout_fd : STDERR_FILENO; return SparcLiveProcess::create(getInstanceName(), system, stdin_fd, stdout_fd, stderr_fd, (string)executable == "" ? cmd[0] : executable, cmd, env); } REGISTER_SIM_OBJECT("SparcLiveProcess", SparcLiveProcess)