/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Andrew Schultz */ #include #include #include "arch/alpha/tlb.hh" #include "base/inifile.hh" #include "base/str.hh" #include "base/trace.hh" #include "config/alpha_tlaser.hh" #include "cpu/exec_context.hh" #include "sim/builder.hh" using namespace std; using namespace EV5; /////////////////////////////////////////////////////////////////////// // // Alpha TLB // #ifdef DEBUG bool uncacheBit39 = false; bool uncacheBit40 = false; #endif #define MODE2MASK(X) (1 << (X)) AlphaTLB::AlphaTLB(const string &name, int s) : SimObject(name), size(s), nlu(0) { table = new AlphaISA::PTE[size]; memset(table, 0, sizeof(AlphaISA::PTE[size])); } AlphaTLB::~AlphaTLB() { if (table) delete [] table; } // look up an entry in the TLB AlphaISA::PTE * AlphaTLB::lookup(Addr vpn, uint8_t asn) const { // assume not found... AlphaISA::PTE *retval = NULL; PageTable::const_iterator i = lookupTable.find(vpn); if (i != lookupTable.end()) { while (i->first == vpn) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); if (vpn == pte->tag && (pte->asma || pte->asn == asn)) { retval = pte; break; } ++i; } } DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn, retval ? "hit" : "miss", retval ? retval->ppn : 0); return retval; } Fault AlphaTLB::checkCacheability(RequestPtr &req) { // in Alpha, cacheability is controlled by upper-level bits of the // physical address /* * We support having the uncacheable bit in either bit 39 or bit 40. * The Turbolaser platform (and EV5) support having the bit in 39, but * Tsunami (which Linux assumes uses an EV6) generates accesses with * the bit in 40. So we must check for both, but we have debug flags * to catch a weird case where both are used, which shouldn't happen. */ #if ALPHA_TLASER if (req->getPaddr() & PAddrUncachedBit39) { #else if (req->getPaddr() & PAddrUncachedBit43) { #endif // IPR memory space not implemented if (PAddrIprSpace(req->getPaddr())) { return new UnimpFault("IPR memory space not implemented!"); } else { // mark request as uncacheable req->setFlags(req->getFlags() | UNCACHEABLE); #if !ALPHA_TLASER // Clear bits 42:35 of the physical address (10-2 in Tsunami manual) req->setPaddr(req->getPaddr() & PAddrUncachedMask); #endif } } return NoFault; } // insert a new TLB entry void AlphaTLB::insert(Addr addr, AlphaISA::PTE &pte) { AlphaISA::VAddr vaddr = addr; if (table[nlu].valid) { Addr oldvpn = table[nlu].tag; PageTable::iterator i = lookupTable.find(oldvpn); if (i == lookupTable.end()) panic("TLB entry not found in lookupTable"); int index; while ((index = i->second) != nlu) { if (table[index].tag != oldvpn) panic("TLB entry not found in lookupTable"); ++i; } DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn); lookupTable.erase(i); } DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn); table[nlu] = pte; table[nlu].tag = vaddr.vpn(); table[nlu].valid = true; lookupTable.insert(make_pair(vaddr.vpn(), nlu)); nextnlu(); } void AlphaTLB::flushAll() { DPRINTF(TLB, "flushAll\n"); memset(table, 0, sizeof(AlphaISA::PTE[size])); lookupTable.clear(); nlu = 0; } void AlphaTLB::flushProcesses() { PageTable::iterator i = lookupTable.begin(); PageTable::iterator end = lookupTable.end(); while (i != end) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); // we can't increment i after we erase it, so save a copy and // increment it to get the next entry now PageTable::iterator cur = i; ++i; if (!pte->asma) { DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn); pte->valid = false; lookupTable.erase(cur); } } } void AlphaTLB::flushAddr(Addr addr, uint8_t asn) { AlphaISA::VAddr vaddr = addr; PageTable::iterator i = lookupTable.find(vaddr.vpn()); if (i == lookupTable.end()) return; while (i->first == vaddr.vpn()) { int index = i->second; AlphaISA::PTE *pte = &table[index]; assert(pte->valid); if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) { DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(), pte->ppn); // invalidate this entry pte->valid = false; lookupTable.erase(i); } ++i; } } void AlphaTLB::serialize(ostream &os) { SERIALIZE_SCALAR(size); SERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { nameOut(os, csprintf("%s.PTE%d", name(), i)); table[i].serialize(os); } } void AlphaTLB::unserialize(Checkpoint *cp, const string §ion) { UNSERIALIZE_SCALAR(size); UNSERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { table[i].unserialize(cp, csprintf("%s.PTE%d", section, i)); if (table[i].valid) { lookupTable.insert(make_pair(table[i].tag, i)); } } } /////////////////////////////////////////////////////////////////////// // // Alpha ITB // AlphaITB::AlphaITB(const std::string &name, int size) : AlphaTLB(name, size) {} void AlphaITB::regStats() { hits .name(name() + ".hits") .desc("ITB hits"); misses .name(name() + ".misses") .desc("ITB misses"); acv .name(name() + ".acv") .desc("ITB acv"); accesses .name(name() + ".accesses") .desc("ITB accesses"); accesses = hits + misses; } Fault AlphaITB::translate(RequestPtr &req, ExecContext *xc) const { if (AlphaISA::PcPAL(req->getVaddr())) { // strip off PAL PC marker (lsb is 1) req->setPaddr((req->getVaddr() & ~3) & PAddrImplMask); hits++; return NoFault; } if (req->getFlags() & PHYSICAL) { req->setPaddr(req->getVaddr()); } else { // verify that this is a good virtual address if (!validVirtualAddress(req->getVaddr())) { acv++; return new ItbAcvFault(req->getVaddr()); } // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5 // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6 #if ALPHA_TLASER if ((MCSR_SP(xc->readMiscReg(AlphaISA::IPR_MCSR)) & 2) && VAddrSpaceEV5(req->getVaddr()) == 2) { #else if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) { #endif // only valid in kernel mode if (ICM_CM(xc->readMiscReg(AlphaISA::IPR_ICM)) != AlphaISA::mode_kernel) { acv++; return new ItbAcvFault(req->getVaddr()); } req->setPaddr(req->getVaddr() & PAddrImplMask); #if !ALPHA_TLASER // sign extend the physical address properly if (req->getPaddr() & PAddrUncachedBit40) req->setPaddr(req->getPaddr() | ULL(0xf0000000000)); else req->setPaddr(req->getPaddr() & ULL(0xffffffffff)); #endif } else { // not a physical address: need to look up pte int asn = DTB_ASN_ASN(xc->readMiscReg(AlphaISA::IPR_DTB_ASN)); AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->getVaddr()).vpn(), asn); if (!pte) { misses++; return new ItbPageFault(req->getVaddr()); } req->setPaddr((pte->ppn << AlphaISA::PageShift) + (AlphaISA::VAddr(req->getVaddr()).offset() & ~3)); // check permissions for this access if (!(pte->xre & (1 << ICM_CM(xc->readMiscReg(AlphaISA::IPR_ICM))))) { // instruction access fault acv++; return new ItbAcvFault(req->getVaddr()); } hits++; } } // check that the physical address is ok (catch bad physical addresses) if (req->getPaddr() & ~PAddrImplMask) return genMachineCheckFault(); return checkCacheability(req); } /////////////////////////////////////////////////////////////////////// // // Alpha DTB // AlphaDTB::AlphaDTB(const std::string &name, int size) : AlphaTLB(name, size) {} void AlphaDTB::regStats() { read_hits .name(name() + ".read_hits") .desc("DTB read hits") ; read_misses .name(name() + ".read_misses") .desc("DTB read misses") ; read_acv .name(name() + ".read_acv") .desc("DTB read access violations") ; read_accesses .name(name() + ".read_accesses") .desc("DTB read accesses") ; write_hits .name(name() + ".write_hits") .desc("DTB write hits") ; write_misses .name(name() + ".write_misses") .desc("DTB write misses") ; write_acv .name(name() + ".write_acv") .desc("DTB write access violations") ; write_accesses .name(name() + ".write_accesses") .desc("DTB write accesses") ; hits .name(name() + ".hits") .desc("DTB hits") ; misses .name(name() + ".misses") .desc("DTB misses") ; acv .name(name() + ".acv") .desc("DTB access violations") ; accesses .name(name() + ".accesses") .desc("DTB accesses") ; hits = read_hits + write_hits; misses = read_misses + write_misses; acv = read_acv + write_acv; accesses = read_accesses + write_accesses; } Fault AlphaDTB::translate(RequestPtr &req, ExecContext *xc, bool write) const { Addr pc = xc->readPC(); AlphaISA::mode_type mode = (AlphaISA::mode_type)DTB_CM_CM(xc->readMiscReg(AlphaISA::IPR_DTB_CM)); /** * Check for alignment faults */ if (req->getVaddr() & (req->getSize() - 1)) { DPRINTF(TLB, "Alignment Fault on %#x, size = %d", req->getVaddr(), req->getSize()); uint64_t flags = write ? MM_STAT_WR_MASK : 0; return new DtbAlignmentFault(req->getVaddr(), req->getFlags(), flags); } if (pc & 0x1) { mode = (req->getFlags() & ALTMODE) ? (AlphaISA::mode_type)ALT_MODE_AM( xc->readMiscReg(AlphaISA::IPR_ALT_MODE)) : AlphaISA::mode_kernel; } if (req->getFlags() & PHYSICAL) { req->setPaddr(req->getVaddr()); } else { // verify that this is a good virtual address if (!validVirtualAddress(req->getVaddr())) { if (write) { write_acv++; } else { read_acv++; } uint64_t flags = (write ? MM_STAT_WR_MASK : 0) | MM_STAT_BAD_VA_MASK | MM_STAT_ACV_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } // Check for "superpage" mapping #if ALPHA_TLASER if ((MCSR_SP(xc->readMiscReg(AlphaISA::IPR_MCSR)) & 2) && VAddrSpaceEV5(req->getVaddr()) == 2) { #else if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) { #endif // only valid in kernel mode if (DTB_CM_CM(xc->readMiscReg(AlphaISA::IPR_DTB_CM)) != AlphaISA::mode_kernel) { if (write) { write_acv++; } else { read_acv++; } uint64_t flags = ((write ? MM_STAT_WR_MASK : 0) | MM_STAT_ACV_MASK); return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags); } req->setPaddr(req->getVaddr() & PAddrImplMask); #if !ALPHA_TLASER // sign extend the physical address properly if (req->getPaddr() & PAddrUncachedBit40) req->setPaddr(req->getPaddr() | ULL(0xf0000000000)); else req->setPaddr(req->getPaddr() & ULL(0xffffffffff)); #endif } else { if (write) write_accesses++; else read_accesses++; int asn = DTB_ASN_ASN(xc->readMiscReg(AlphaISA::IPR_DTB_ASN)); // not a physical address: need to look up pte AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->getVaddr()).vpn(), asn); if (!pte) { // page fault if (write) { write_misses++; } else { read_misses++; } uint64_t flags = (write ? MM_STAT_WR_MASK : 0) | MM_STAT_DTB_MISS_MASK; return (req->getFlags() & VPTE) ? (Fault)(new PDtbMissFault(req->getVaddr(), req->getFlags(), flags)) : (Fault)(new NDtbMissFault(req->getVaddr(), req->getFlags(), flags)); } req->setPaddr((pte->ppn << AlphaISA::PageShift) + AlphaISA::VAddr(req->getVaddr()).offset()); if (write) { if (!(pte->xwe & MODE2MASK(mode))) { // declare the instruction access fault write_acv++; uint64_t flags = MM_STAT_WR_MASK | MM_STAT_ACV_MASK | (pte->fonw ? MM_STAT_FONW_MASK : 0); return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } if (pte->fonw) { write_acv++; uint64_t flags = MM_STAT_WR_MASK | MM_STAT_FONW_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } } else { if (!(pte->xre & MODE2MASK(mode))) { read_acv++; uint64_t flags = MM_STAT_ACV_MASK | (pte->fonr ? MM_STAT_FONR_MASK : 0); return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags); } if (pte->fonr) { read_acv++; uint64_t flags = MM_STAT_FONR_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } } } if (write) write_hits++; else read_hits++; } // check that the physical address is ok (catch bad physical addresses) if (req->getPaddr() & ~PAddrImplMask) return genMachineCheckFault(); return checkCacheability(req); } AlphaISA::PTE & AlphaTLB::index(bool advance) { AlphaISA::PTE *pte = &table[nlu]; if (advance) nextnlu(); return *pte; } DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB) BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) Param size; END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB) INIT_PARAM_DFLT(size, "TLB size", 48) END_INIT_SIM_OBJECT_PARAMS(AlphaITB) CREATE_SIM_OBJECT(AlphaITB) { return new AlphaITB(getInstanceName(), size); } REGISTER_SIM_OBJECT("AlphaITB", AlphaITB) BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) Param size; END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB) INIT_PARAM_DFLT(size, "TLB size", 64) END_INIT_SIM_OBJECT_PARAMS(AlphaDTB) CREATE_SIM_OBJECT(AlphaDTB) { return new AlphaDTB(getInstanceName(), size); } REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)